

REPORT DISTRIBUTION

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW

El Report No.: E23975.E02_Rev1 Date: 15 March 2019

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Pymble Golf Club Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW 2075	
	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, Pyrmont NSW 2009	

Author

Technical Reviewer

Sham Li

S. foste

SHARON LI Environmental Scientist		NATHAN FOSTER Senior Environmental Scientist	
Revision Details		Date	Amended By
0	-	14 February 2019	-
1	Updated development drawings	15 March 2019	LY

© 2019 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

EXECUTIVE SUMMARY

Background

Pymble Golf Club engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) for the property located at Pymble Golf Club 4, 12-14 Cowan Road, St Ives ('the site'). El understand that this investigation is required by Ku-ring-gai Council for assessment of a proposed residential planning proposal for the site and redevelopment of the golf club.

Objectives

The main objectives of the assessment were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources (Preliminary Site Investigation PSI);
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants of concern (Detailed Site Investigation – DSI); and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils.

Findings

- The site, which fronts Cowan Road to the east, consists of four allotments (Lot 1 DP511821, Lot B DP368565, Lot 1, 2, and 3 DP531533), covering a total area of 9,773 m². The site is occupied by Pymble Golf Club clubhouse and car parking facilities, a bowling green and two residential dwellings;
- Historical records indicated that the proposed development area has been used as part of a golf club since early 1920s. The surrounding areas were predominantly rural-residential with orchard activity up until at least late 1930s. In the early 1940s, the site was further developed as a golf clubhouse and for residential purpose. Site use has remained the same since the 1940s;
- The site was free of statutory notices issued by the NSW EPA and was not recorded on the List of NSW Contaminated Sites Notified to EPA or the POEO register;
- SafeWork NSW records revealed the presence of two underground storage tanks and three roofed store areas for herbicides, fungicides and pesticides on the larger golf course site. However, based on the attached drawing in the records, the locations of the dangerous goods depots were outside the study area, and approximate 400 m north-west and hydraulically down-gradient of the proposed development area;
- The sub-surface layers comprised primarily of gravelly clay and silty sand fill materials, overlying residual clays (low to high plasticity) and weathered shale bedrock;
- Soil sampling and analysis were conducted at twenty-one borehole locations (BH101M to BH121) down to a maximum depth of 8.0 mBGL;
 - Soil samples collected and laboratory analysed from the twenty-one borehole locations were below the adopted human-health investigation and ecological criteria.

- Three groundwater monitoring wells (BH101M, BH115M and BH118M) were installed during the investigation. Groundwater was not encountered during the investigation as monitoring wells were dry. Based on information gathered during the PSI (EI, 2018) and laboratory analytical results obtained during this investigation, groundwater is unlikely to represent a significant risk of harm to human health or the environment;
- Based on the investigation findings, the CSM appropriately identified contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Most previously known data gaps have largely been addressed, however, the following data gaps that remain will require closure by further investigation:
 - The quality of soils beneath building structure areas of the site not accessible during this investigation; and
 - Potential presence of hazardous materials present within existing structures on the site.

Conclusions and Recommendations

Based on the findings from of this DSI, conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 12**), contamination exceeding human-health investigation criteria was not identified. While some data gaps remain that require closure by further intrusive investigation, the available quantitative soil data does not indicate the presence of contamination that would preclude the site from being rezoned for residential purposes.

Based on the findings of this investigation, EI consider the site is suitable for the proposed redevelopment, subject to the implementation of the following recommendations:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
- Following the completion of demolition works and the removal of demolition debris, a clearance inspection be undertaken by a qualified occupational hygienist and subsequent clearance certificate issued;
- Following demolition, intrusive soil investigation is to be completed within the building footprints of the previously in accessible structures to characterise soil quality;
- Any material being removed from site (including virgin excavated natural materials (VENM)) as part of the proposed development works is to be classified for off-site disposal in accordance the EPA (2014) *Waste Classification Guidelines*;
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Should unexpected finds (contamination) be encountered during redevelopment works a qualified environmental consultant be engaged to inspect the finds and offer appropriate guidance.

TABLE OF CONTENTS

EXE	ECUTIVE SUMMARY	I			
1.	INTRODUCTION	1			
	1.1 BACKGROUND AND PURPOSE1.2 PROPOSED DEVELOPMENT	1			
	1.3 REGULATORY FRAMEWORK	1			
	1.4 PROJECT OBJECTIVES 1.5 SCOPE OF WORKS	22			
2.	SITE DESCRIPTION	4			
Ζ.	2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTIN				
	2.2 Surrounding Land Use	5			
	2.3 REGIONAL SETTING	5			
	2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER 2.5 SITE WALKOVER INSPECTION OBSERVATIONS	USE 6 7			
3.	PREVIOUS INVESTIGATIONS	8			
J.	3.1 Available Documents	o 8			
4.	CONCEPTUAL SITE MODEL	9			
	4.1 Subsurface Conditions	9			
	4.2 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTOR				
	4.3 CONTAMINATION SOURCES	9			
	4.4 CONTAMINANTS OF POTENTIAL CONCERN	10			
	4.5 OTHER CHEMICALS OF CONCERN 4.6 DATA GAPS	10 13			
5.					
5.	SAMPLING, ANALYTICAL AND QUALITY PLAN (SAG 5.1 DATA QUALITY OBJECTIVES (DQO)	14 (F) 14			
	5.2 DATA QUALITY INDICATORS	18			
6.	ASSESSMENT METHODOLOGY	19			
-	6.1 SAMPLING RATIONALE	19			
	6.2 Investigation Constraints	19			
	6.3 ASSESSMENT CRITERIA	19			
	6.4 SOIL INVESTIGATION 6.5 GROUNDWATER INVESTIGATION	21 22			
7.	DATA QUALITY ASSESSMENT	22			
<i>'</i> .	7.1 QUALITY OVERVIEW	25			
8.	RESULTS	26			
0.	8.1 SITE INVESTIGATION	26			
	8.2 GROUNDWATER INVESTIGATION RESULTS	27			
	8.3 LABORATORY ANALYTICAL RESULTS	27			
9.	SITE CHARACTERISATION	30			
	9.1 REVIEW OF CONCEPTUAL SITE MODEL	30			
	9.2 Soil Quality 9.3 Groundwater Quality	30 30			
10.	CONCLUSIONS	30			
		-			
11.		33			
12.	STATEMENT OF LIMITATIONS 34				

REFERENCES

ABBREVIATIONS

TABLES (In Text)

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	4
TABLE 2-2	SURROUNDING LAND USES	5
TABLE 2-3	REGIONAL SETTING INFORMATION	5
TABLE 5-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	15
TABLE 5-2	DATA QUALITY INDICATORS	18
TABLE 6-1	ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	20
TABLE 6-2	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	21
TABLE 6-3	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	22
TABLE 8-1	GENERALISED SUBSURFACE PROFILE	26
TABLE 8-2	MONITORING WELL CONSTRUCTION DETAILS	27
TABLE 8-3	SUMMARY OF SOIL ANALYTICAL RESULTS	28

TABLES

TABLE T1 SUMMARY OF SOIL INVESTIGATION RESULTS FOR HEAVY METALS

TABLE T2SUMMARY OF GROUNDWATER INVESTIGATION RESULTS

TABLE T3 RPD QAQC

FIGURES

FIGURE 1 LOCALITY PLAN FIGURE 2 SAMPLING LOCATIONS

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS APPENDIX B NSW OFFICE OF WATER GROUNDWATER BORE SEARCH APPENDIX C SITE PHOTOGRAPHS APPENDIX E BOREHOLE LOGS APPENDIX F FIELD DATA SHEETS APPENDIX G CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS APPENDIX H LAB ANALYTICAL REPORTS APPENDIX I QA/QC ASSESSMENT APPENDIX J LAB QA/QC POLICIES AND DQO'S

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Pymble Golf Club engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) for the property located at Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW. The area of investigation ('the site') is located in the east portion of the site, and covers a total area of approximately 9,773 m², as depicted in **Figure 2**.

The site, located approximately 16 km north-west of the Sydney central business district (CBD) (**Figure 1**), comprises five allotments (Lot 1 DP511821, Lot B DP368565, Lots 1, 2, and 3 DP531533), and is situated within the Local Government Area of Ku-ring-gai Council,. The site is currently occupied by Pymble Golf Club clubhouse and associated car parking facilities, a bowling green, and two residential dwellings.

El understand that this investigation is required by Ku-ring-gai Council for assessment of a proposed residential planning proposal for the site.

1.2 PROPOSED DEVELOPMENT

Based on proposed development plans (**Appendix A**), El understand that the redevelopment involves a planning proposal to Ku-ring-gai Council that seeks to amend Ku-ring-gai Local Environmental Plan (Local Centres) 2012 and Ku-ring-gai Local Environmental Plan 2015 to allow low rise residential flat development that would accommodate 77 dwellings. A redevelopment of the golf clubhouse is also proposed.

For assessment purposes, deep soils are proposed to be retained onsite in the vicinity of four proposed residential building (Block A to D), and within a terrace area in the vicinity of the new proposed club house. These locations are shown in **Appendix A** and **Figure 2**.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZAST (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- Ku-ring-gai Council (2015) Local Environmental Plan;
- Ku-ring-gai Council (2015) Development Control Plan;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme;
- NEMP (2018) PFAS National Environmental Management Plan;
- NEPM (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPM (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;

- State Environment Protection Policy 55 (SEPP 55) Remediation of Land; and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 PROJECT OBJECTIVES

The proponent approached EI, to undertake a detailed site investigation for the purpose of obtaining baseline data on the status of the site prior to redevelopment. The primary objectives of this DSI were therefore to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources (Preliminary Site Investigation PSI);
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants of concern (Detailed Site Investigation – DSI); and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils.

1.5 SCOPE OF WORKS

In accordance with EI fee proposal P16614.1 (dated 19 June 2018), to achieve the above objectives, the scope of works was as follows:

1.5.1 Desktop Study

- A review of all relevant and available mapping for the project area; and
- A review of previous environmental reports

1.5.2 Field Work & Laboratory Analysis

- A site walkover inspection;
- Drilling of boreholes at twenty-one (21) locations across accessible areas of the site. This number of locations meets the minimum sampling protocol recommended under EPA (1995);
- Construction of three (3) groundwater monitoring wells to a maximum depth of 9 mBGL. The groundwater monitoring bores will be constructed to standard environmental protocols to investigate the potential for groundwater contamination;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the three constructed groundwater monitoring wells; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

Preparation of a DSI report documenting desk top study findings, conceptual site model, data quality objectives, investigation methodologies, and results. The report would also provide a record of observations made during the intrusive investigation and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description	
Street Address	Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW	
Location Description	The site is located approx. 16 km north-west of the Sydney CBD, and is bound by:	
	• North: Residential properties and existing golf course;	
	• East : Cowan Road, followed by low-density residential properties and a shopping centre;	
	• South: Residential properties and existing golf course; and	
	• West: Existing golf course, followed by Cowan Creek then low density residential properties.	
	The site is occupied by Pymble Golf Club clubhouse and car parking facilities, bowling green and two residential dwellings.	
Site Coordinates	North eastern corner of site (GDA94-MGA56):	
	• Easting: 329212.688	
	• Northing: 6266249.746	
	(Source: http://maps.six.nsw.gov.au)	
Site Area	Approx. 10,000 m ²	
Lot and Deposited Plan (DP)	Lot 1 DP511821, Lot B DP368565, Lot 1, 2, and 3 DP531533	
State Survey Marks	One State Survey (SS) mark and Three Permanent Mark (PM) are situated in close proximity (<50 m) to the site:	
	SS126520 (Approx. 6 m east of site on the Cowan Road)	
	PM2486 (Approx. 3 m east of site, on the Cowan Road)	
	PM10921 (Approx. 30 m south-east of site, on the corner of Cowan Road and Mona Vale Road)	
	 PM2454D (Approx. 36 m south-east of site, on the corner of Cowan Road and Mona Vale Road) 	
	(Source: <u>http://maps.six.nsw.gov.au/</u>).	
Local Government Authority	Ku-ring-gai Council	
Parish	Gordon	
County	Cumberland	
Current Zoning	RE2 Private Recreation and R3 Medium Density Residential	
	Ku-ring-gai Local Environmental Plan 2015	
	 Ku-ring-gai Local Environmental Plan 2012 (Town Centres) 	

Table 2-1 Site Identification, Location and Zoning

Current Land Uses

The site is occupied by Pymble Golf Club clubhouse and car parking facilities, bowling green and two residential dwellings.

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed land uses and current uses. Current uses of surrounding land are described in **Table 2-2**.

Direction	Land Use Description	Sensitive Receptors (& distance from site)
North	Residential properties and existing golf course	Residential Dwellings (<60 m north) St Ives Village Green (approx. 200 m north)
South	Residential properties and existing golf course	Residential Dwellings (100 m south) Dalrymple Hay Nature Reserve (approx. 500 m south)
East	Cowan Road, followed by low-density residential properties and a shopping centre	Residential Dwellings (<60 m east)
West	Existing golf course, followed by Cowan Creek then low density residential properties	Cowan Creek (approx.750 m west)

Table 2-2 Surrounding Land Uses

Overall, sensitive land uses, such as schools or childcare centres, were not identified within the vicinity (500 m) of the site.

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description		
Topography	Based on observations noted during the site walkover, the site generally slopes towards the west and north west.		
Site Drainage	Site drainage is likely to be consistent with the general slope of the site. Stormwater is likely to be collected by pit and pipe drainage, draining to the municipal stormwater system.		
Regional Geology	The site is likely to be underlain by the Ashfield Shale, which is characterised by black to dark grey shale and laminite, (Ref. 1:100 000 Geological Series Sheet 9130 – Sydney, NSW DMR).		

Table 2-3 Regional Setting Information

Attribute	Description
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 2002) indicates that The site overlies the Glenorie (gn) landscape.
	The landscape comprises of undulating to rolling rises on Wianamatta Group shales. Soils are identified as shallow to moderately deep (<100 cm) red podzolic soils on crests, moderately deep (70-100 cm) red and brown podzolic soils on upper slopes, deep >200 cm yellow podzolic soils on lower slopes and humic gleys. Yellow podzolic soils and gleyed podzolic soils on drainage lines.
Acid Sulfate Soils	With reference to the Ku-ring-gai Council Acid Sulfate Soils (ASS) map (ASS-013) the Lot 1 DP 511821 is mapped as <i>Class 5</i> Acid Sulfate Soils. Class 5 areas are likely to locate ASS during works within 500 metres of adjacent Class 1, 2, 3, or 4 land which are likely to lower the water table below 1 metre AHD on adjacent Class 1,2, 3 or 4 land. With reference to Hornsby / Mona Vale Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of <i>No Known Occurrence</i> . In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".
Typical Soil Profile	Thin surficial sandy fill material overlying residual clay and shale bedrock. Fill – Silty sand; fine to medium grained, brown, with brick fragments and sub- angular to angular gravels, with rootlets, no odour. Gravelly clay; low plasticity, orange, with sub-angular to angular gravels, no odour. Residual – Clay; low to medium plasticity, red, no odour.
	Clay; medium to high plasticity, grey mottled red, no odour.
	Bedrock – Shale; weathered rock, red, no odour.
	Shale; slightly weathered, grey, no odour.
Depth to Groundwater	Groundwater was not encountered during the current investigation.
Nearest Surface Water Feature	Cowan Creek, approximately 600 m west of the site.
Groundwater Flow Direction	West, towards Cowan Creek.

2.4 GROUNDWATER BORE RECORDS AND LOCAL GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on 6 September 2018 through the WaterNSW (Ref. <u>https://realtimedata.waternsw.com.au/water.stm</u>). There were 28 registered bores within a 500 m radius of the site. A summary of 5 selected bores is presented with details in **Table 2-4**. A groundwater bore location plan and detailed information regarding the listed bores is attached in **Appendix B**.

Table 2-4	Summary of Registered Groundwater Bores
-----------	---

Bore No.	Date Drilled	Distance and Direction	Drilled Depth (m)	SWL(m BGL)* / Salinity	Bore Purpose
GW112191	31.01.2003	125 m south-east	-	NA / NA	Monitoring Bore
GW112190	31.01.2003	125 m south-east	-	NA / NA	Monitoring Bore
GW112193	30.01.2003	125 m south-east	-	NA / NA	Monitoring Bore
GW110701	31.07.2009	125 m south	7.0	5.3 / NA	Monitoring Bore

Bore No.	Date Drilled	Distance and Direction	Drilled Depth (m)	SWL(m BGL)* / Salinity	Bore Purpose
GW110700	31.07.2009	125 m south	7.0	5.3 / NA	Monitoring Bore

2.5 SITE WALKOVER INSPECTION OBSERVATIONS

Site observations were recorded during a site walkover inspection of the site on 7-8 January 2019. A summary of site observations is detailed below and site photographs taken during the inspection are present in **Appendix C**. Site observations are summarised in **Table 2-5**.

Allotment	Buildings	USTs/ASTs	Observations
Lot 1 DP511821	Clubhouse	Not evident	• The central portion of the site is occupied by a clubhouse. (Appendix C , Photo 3); and
			• The remaining land in front of the clubhouse is covered with asphalt for car parking purposes. The concrete is old, but in good conditions with minor cracking and deformation evident (Appendix C , Photo 1).
Lot B DP 368565	Nil	Not evident	• The land is covered with asphalt for car parking purposes. The concrete is old, but in good conditions with minor cracking and deformation evident (Appendix C , Photo 1).
Lot 1 DP 531533	A residential dwelling	Not evident	 The site is currently occupied by a residential dwelling (Appendix C, Photo 6).
Lot 2 DP 531533	Nil	Not evident	 The site is currently a gravel vacant area (Appendix C, Photo 7);
Lot 3 DP 531533	A residential dwelling	Not evident	 The site is currently occupied by a residential dwelling. (Appendix C, Photo 2).

 Table 2-5
 Buildings and Infrastructure Summary

3. PREVIOUS INVESTIGATIONS

3.1 AVAILABLE DOCUMENTS

El understands that this report follows on from the previous investigations completed for the site:

• El Australia (2018) Preliminary Site Investigation, Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW (ref. E23975.E01_Rev1).

A summary of works and key findings of the previous assessment reports are outlined in Table 3-1.

Assessment Details	Project Tasks and Findings
Key Findings	Land titles records and historic aerial photography indicated that the site was predominantly rural residential up until at least the late 1930's. As early as the 1940s, the site was redeveloped as a golf clubhouse and residential purposes, with surrounding land use predominantly residential and commercial. SafeWork NSW records reported the presence of two underground storage tanks and three roofed store areas for herbicides, fungicides at the Pymble Golf Club. However, the location of these depots are outside the study area and approximate 400 m northwest and hydraulically down-gradient of the site;
	While Ku-ring-gai Council records were unavailable for review at the time of writing, EPA records revealed three service station properties with 150 m that had been reported to the EPA as potentially contaminated, or were the subject of a remediation order. All properties, however, are noted to occur hydraulically down gradient of the site, and are unlikely to be potential offsite contamination sources.
	The site walkover inspection identified a number of potential sources of contamination typically associated with residential properties and golf courses (e.g. weathered structures, herbicide/pesticide use, placement of fill, use of hazardous building materials in structures, etc.).
	The conceptual site model (CSM) and qualitative risk assessment produced from the information gathered by the PSI identified potential contaminating sources and relevant exposure pathways to end users of the site that would be present under the proposed redevelopment layout.
Conclusions and Recommendations	It was conclude that there was potential for contamination to be present on the site that could pose risks to end users following redevelopment. As such, a detailed site investigation (DSI) involving intrusive investigations was recommended to characterise the environmental conditions of the site. The PSI also recommened that a hazardous materials survey be conducted on existing site structures prior to demolition.

Table 3-1 Summary of Previous Investigation Findings

4. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

4.1 SUBSURFACE CONDITIONS

The overall site geological conditions encountered in the DSI are summarised in **Table 8-1** the subsurface was generally shallow gravelly clay fill overlying residual clay.

4.2 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 4-5**.

4.3 CONTAMINATION SOURCES

Base on the site history and the site inspection, the primary contaminant sources considered to be present at the site are outlined in **Table 4-1**.

Contaminant Source	Comment	Potential Impacts
Surface filling	Y	A wide range of potential inorganic and organic chemicals
Demolition of former buildings	Y	Potential paint and fibrous cement sheeting fragments potentially containing asbestos
Degradation of building surfaces (including fences)	Y	Priority metals particularly Cu, Pb & Zn, paint fragments and asbestos fines, including friable asbestos from fire damaged building(s).
Potential use of pesticides on or underneath building footprints and sealed surfaces	Y	Potential soil contamination of OCP's, OPP's, and PCBs
Current commercial site activities (golf club), potential use of pesticides across the site.	Y	Potential soil contamination of OCP's, OPP's, and PCBs
Contamination from off-site sources	Y	Potential impact of VOCs, PAHs and heavy metals from adjacent petrol stations.
Potential contamination in areas not accessible during investigations (underneath building footprints)	Y	Potential impact of heavy metals, OCP's, OPP's, BTEX, PCB's and PAH's from future demolition due to structure metals.

Table 4-1 Contaminant Sources

Note 1 Y - Yes, N- No, N/A - Not applicable

4.4 CONTAMINANTS OF POTENTIAL CONCERN

Based on the findings of the site contamination appraisal, the contaminants of potential concern (COPC) at the site and the potential media impacts are outlined in **Table 4-2**. For definitions and abbreviations see glossary at end of report.

Contaminants of Potential Concern	Soil Impacts ¹	Air Quality Impacts ¹	Groundwater Impacts ¹
Priority metals As, Cd, Cr, Cu, Hg, Ni, Pb, & Zn also commonly known as heavy metals (HMs)	Н	L	L
Other metals Be, Co, Cr^{VI} , Mn, Se	L	N/A	L
Total recoverable hydrocarbons (TRH)	L	L	L
Monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl benzene and xylenes (BTEX)	Μ	L	L
Polycyclic aromatic hydrocarbons (PAH) including B(a)P TEQ	Μ	L	L
Volatile organic compounds (VOCs) including Chlorinated volatile organic compounds (cVOCs)	L	L	L
Organochlorine and Organophosphate pesticides (OCP/ OPP)	Μ	N/A	L
Phenols	L	N/A	L
Polychlorinated biphenyls (PCB)	М	N/A	L
Asbestos	М	L	N/A
LNAPL or DNAPL	N/A	N/A	L
Others (See Section 4.5)	L	L	L

Table 4-2 Contaminants of Potential Concern

Note: L – low risk. M – medium/moderate risk. H – high risk. N/A – not applicable (or "-")

4.5 OTHER CHEMICALS OF CONCERN

4.5.1 Per or poly-fluoroalkyl substances (PFAS)

The NSW EPA (2017) auditor guidelines and the PFAS National Environmental Management Plan (NEMP) (2018) require that PFAS is considered in assessing contamination. El use the following decision tree (**Table 4-3**) based on EnRisk (2016) for prioritising the potential for PFAS to be present on site and whether PFAS sampling of soil and water is required.

Table 4-3 PFAS Decision Tree

Preliminary Screening	Decision
Did fire training occur on-site?	No
Did fire training occur, or is an airport or fire station up-gradient of or adjacent to the site? $^{1} \ \ $	No
Have "fuel" fires ever occurred on-site? (e.g. ignition of fuel (solvent, petrol, diesel, kerosene) tanks?)	No
Have PFAS been used in manufacturing or stored on-site ? ²	No
If Yes to any questions, has site analytical suite been optimised to include preliminary sampling and testing for PFAS in soil (ASLP Testing) and water?	-

Note 1 Runoff from fire training areas may impact surface water, sediment and groundwater.

Note 2 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam (<u>https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas</u>)

4.5.2 Emerging Chemicals

The NSW EPA uses Chemical control orders (CCOs) as a primary legislative tool under the EHC Act (1985) to selectively and specifically control particular chemicals of concern, and limit their potential impact on the environment. CCOs provide the EPA a rapid and flexible mechanism for responding to emerging chemical issues. As with PFAS, EI has considered chemicals controlled by CCOs and other potential emerging chemicals in this assessment as outline in **Table 4-4**.

Table 4-4 Emerging or controlled chemicals

Chemicals of Concern (CCO or emerging)	Decision	
Were aluminium smelter wastes used or stored on site (CCO,1986)?	No	
Do dioxin contaminated wastes (CCO,1986) have the potential to impact the site? $^{\rm 1}$	No	
Were organotin products (CCO,1989) used or stored on site ? ²	No	
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? ³	Yes If PCB containing Organochlorine pesticides were used onsite	
Were scheduled chemical or wastes (CCO, 2004) used or stored ⁴	Yes If Organochlorine pesticides were used onsite	
Are other emerging chemicals suspected? ⁵	No	
If Yes to any questions, has site sampling suite been optimised to include specific sampling for other chemicals of concern in soil, air and water	Yes	

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the site.

Note 2 From anti-fouling paints used or removed at boat & ship yards and marinas.

Note 3 From older transformer oils, electrical capacitors, and in some pesticides.

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging e.g. 1,4 dioxane (associated with some cVOCs),

Table 4-5 Conceptual Site Model

Impacted Media	Contaminants of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
Soil	HM, TRH, PAH, BTEX, OCP, OPP, PCB, and asbestos	Disturbance of surficial and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment	Ingestion; Dermal contact; Inhalation of asbestos fibres and dust particulates	Current commercial occupants at the site Construction and maintenance workers
		Atmospheric dispersion from soil to indoor and outdoor air spaces	Inhalation of asbestos fibres and dust particulates	 End users of the site post redevelopment
	HM, TRH, PAH, BTEX, OCP	Plant uptake of contamination present in root zone	Plant uptake	Future ecological receptors (e.g. site vegetation post redevelopment)
Groundwater	HM, TRHs, BTEX, PAHs, volatile organic compounds (VOCs), and Phenols (Total).	Volatilisation of contamination from groundwater to indoor or outdoor air spaces (onsite and offsite)	Inhalation of vapours	Aquatic ecosystems Ecological Receptors (Cowan Creek) Recreational water users
		Migration of dissolved phase impacts in groundwater	Contaminants arriving at receiving surface water bodies could lead to ingestion and dermal contact	
	F1 and F2 TRH, BTEXN, Phenols (Total) and VOCs	Potential seepage into deep basement intercepting water table (on and offsite)	Dermal contact Ingestion	
Building fabrics containing hazardous materials	Lead, PCB and asbestos	Release of hazardous materials during uncontrolled demolition of building fabrics	Ingestion; Dermal contact; Inhalation of airborne contaminants	Construction and maintenance workers

4.6 DATA GAPS

Based on information from the site walkover inspection and site history review, EI considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in **Section 4.3**), with systematic sampling coverage in site areas where operational site history was not documented.

5. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 5-1**.

Table 5-1 Summary of Project Data Quality Objectives

DQO Steps	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new	Deep soils are proposed to be retained onsite in the vicinity of two proposed residential building (Block A and Block B) and terrace area to the north and east of the new proposed club house. The site is subject to re-zoning under Ku-ring-gai Council.	-
environmental data, and identify the resources available to resolve the problem; develop a	Based on the findings of the PSI (EI, 2018), a number of potential contamination sources were identified at the site, and a CSM (Section 4) has been developed to identified source-exposure pathway-receptor linkages associated with the proposed development.	
conceptual site model	A program of intrusive investigation is therefore required to provide additional data for characterisation of the environmental conditions at the site. The purpose of the investigation is to obtain baseline data on site soil/ groundwater conditions prior to the rezoning and future redevelopment of the site (Section 1.2).	
2. Identify the Goal of the	The decisions needed to be made in this DSI are:	-
Study (Identify the decisions) Identify the decisions that need	 Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined? 	
to be made on the contamination problem and the new environmental data required to make them	 What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? 	
	 Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? 	
	• Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary?	

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW Report No. E23975.E02_Rev1

DQO Steps	Details	Comments (changes during investigation)	
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 The main inputs to the decision making process include: Proposed development plans and land use; Regional and site settings including site geology, topography and surrounding land uses; Information provided in the previously completed PSI (EI, 2018); Aerial photographs, historical land title records, council records; Areas of concern identified during the site inspection prior to intrusive investigations; National and NSW EPA guidelines under the NSW <i>Contaminated Land Management Act 1997</i>; Intrusive investigation sampling to characterise environmental conditions at the site and to evaluate the potential risks to sensitive receptors; and Laboratory analytical results of soil and groundwater samples collected. 	-	
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	Lateral – cadastral boundaries of the site; Vertical – for soil investigation, from the existing ground level to at least 0.5 m into the natural soil strata, and underlying water-bearing zones; and Temporal – Results are valid on the day of sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or onto the site from off-site sources.	Lateral – the extent of the study onsite was limited to accessible areas of the site due to existing building structures, infrastructure, and the location of services. During drilling, groundwater was not encountered at the proposed depth of 8 m BGL.	
 Develop the Analytic approach (Develop a decision ule) The decision rules for the investigation were: If the concentrations of contaminants in the soil data exceed the land use criteria; then assess the need to further investigate the extent of impacts and the need for remedial works onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2. 		-	

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW Report No. E23975.E02_Rev1

DQO Steps	ps Details	
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits: The null hypothesis for the investigation is that the: 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed relevant residential, recreational, or commercial / industrial land use criteria across the site. Sampling on a 22 m grid will allow detection of a circular hotspot with a nominal diameter of 25.7 m with 95% certainty; The acceptance of the site as validated will be based on the probability that The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and No single results exceeds the remediation acceptance criteria by 250% or more; and Soil concentrations for COPCs that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s); and 	 Due to the existing site structures, a systematic sampling pattern was not achieved in this DSI. As a result, the reliability of detecting a circular hotspot of diameter 25.7 m could not be achieved using the adopted targeted sampling pattern. The DSI primarily adopted a targeted sampling pattern, focusing on areas accessible for intrusive investigation. As such, individual soil data points were largely assessed against adopted criteria.
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource- effective sampling and analysis design for general data that are expected to satisfy the DQOs	 The site area (10,000 m²) required twenty-one sampling points according to EPA (1995). Soil sampling locations will be set using a systematic sampling pattern across the site. All samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples. Three groundwater monitoring wells were proposed to characterise groundwater quality within the site. Written instructions will be issued to guide field personnel in the required fieldwork activities. 	Groundwater monitoring wells were not sampled as monitoring wells were dry

5.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 5-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Precision – A quantitative measure of the variability (or	Field: Blind duplicate and triplicate samples	< 30 % relative percentage difference (RPD [%]) in concentrations between the primary and the duplicate sample pair.
reproducibility) of data		RPDs that exceed this range may be considered acceptable where:
		 Results are less than 10 times the limits of reporting (LOR);
		 Results are less than 20 times the LOR and the RPD is less than 50%; and
		 Heterogeneous materials or volatile compounds are encountered.
	Laboratory: Laboratory duplicates, control spike and matrix spike	Prescribed by the laboratories
Accuracy – A	Field:	(loboratory limit of reporting (LOD)
quantitative measure of the closeness of reported data to the "true" value	Rinsate blank Trip blank (laboratory prepared)	< laboratory limit of reporting (LOR) < laboratory limit of reporting (LOR)
	Laboratory: Laboratory control spike, matrix spike, reagent blanks / method blanks and surrogate spikes	Prescribed by the laboratories
Representativeness – The confidence	Field:	(loberatory limit of reporting (LOD)
(expressed qualitatively)	Trip blank (laboratory prepared) Trip spike (laboratory prepared)	< laboratory limit of reporting (LOR) Spike recoveries between 70% - 130%
that data are representative of each medium present onsite	Laboratory: Method blank	Prescribed by the laboratories / NEPM 2013
	Conformance with specified holding times	
Comparability – The confidence (expressed	Same sampling and analytical method	-
qualitatively) that data	Same types of sample	
may be considered to be equivalent for each sampling and analytical event	Adherence to standard operation procedure	
Completeness – A measure of the amount of useable data from a data collection activity	Completion (%)	Compliance with the SAQP

Table 5-2 Data Quality Indicators

6. ASSESSMENT METHODOLOGY

6.1 SAMPLING RATIONALE

With reference to the CSM described in **Section 4**, soil works were planned in accordance with the following rationale:

- Sampling fill and natural soils from twenty-one borehole locations located systematically across the site using an approximate grid-based sampling pattern to characterise in-situ soils;
- Construction of three groundwater monitoring wells to a maximum depth of 7 mBGL (or refusal) for groundwater characterisation; and
- Laboratory analysis of representative soil samples and groundwater samples for the identified contaminants of potential concern.

6.2 INVESTIGATION CONSTRAINTS

The number of test bores drilled installed during the investigation phase achieved the planned investigation scope described in **Section 1.5**, however there were a number of constraints encountered, including:

- Due to the presence of existing structures on the site, soils beneath these structures could not be characterised. In light of this constraint, soils within the investigation area could not be systematically evaluated to determine a hotspot size of
- Due to borehole refusal in shale at the three monitoring well locations, monitoring wells were installed at shallower depths than anticipated without seepage being identified; and
- Due to the irrigation pipe was encountered at BH114 at shallow depth, deeper soil profile was not reached at this subject location.

6.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in **Table 6-1**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013	Soil Health-based Investigation Levels (HILs)
	Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	As a a conservative approach, all soil samples within residential and clubhouse footprints will be assessed against the NEPM 2013 HIL-B thresholds for residential sites with minimal access to soils.
		All soil samples within the rest area of the site will be assessed against the NEPM 2013 HIL-C thresholds for public open space purposes.
		Ecological Investigation Levels (EILs)
		Soil samples will also be assessed against the NEPM 2013 EILs on residential site for areas of the site designated for landscaping. Soil samples will be compared against the NEPM 2013 EILs for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene which have been derived for protection of terrestrial ecosystems. Table 8-4 provides a summary of adopted Added Contaminant Levels (ACL) and Ambient Background Concentrations for the derivation of copper, chromium (III), nickel, lead, and zinc EILs. Generic EILs were adopted for ecological assessment in relation to arsenic, DDT and naphthalene.
		Soil Health-based Screening Levels (HSLs)
		Hydrocarbon HSLs:
		The NEPM (2013) HSL-A&B thresholds for low to high density residential land use were applied to proposed residential areas, to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene.
		The NEPM (2013) HSL-D thresholds commercial land use were applied to the proposed golf club area, assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene.
		The NEPM (2013) HSL-C thresholds recreational land use were applied to the proposed open space areas, assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene.
		Ecological Screening Levels (ESLs)
		Soil samples will be assessed against the NEPM 2013 ESLs for selected petroleum hydrocarbons & TRH fractions for protection of terrestrial ecosystems on residential sites.
		Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples will also be assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
Groundwater	ANZG, 2018 GILs	Groundwater Investigation Levels (GILs) for Fresh Water
	for Fresh Water	ANZG, 2018 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZAST 2018 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant as the closest, potential surface water receptor was Cowan Creek, located approximately 600 m west of the site.
	NEPM, 2013	Groundwater Health-based Screening Levels (HSLs)
	Groundwater HSLs,	The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The HSL- A&B thresholds for low to high-density residential sites were applied for groundwater.

Table 6-1 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
	NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were applied for the assessment of direct contact with groundwater. These were based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011).

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs). SILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 8**.

6.4 SOIL INVESTIGATION

The soil investigation works conducted at the site are described in **Table 6-2**. Test bore locations are illustrated in **Figure 2**.

Activity/Item	Details				
Fieldwork	The site investigation was conducted 7-8 January 2019. Majority of the planned test bores were able to be completed to the target depth within the natural soil profile.				
Drilling Method &	Test bores were drilled using a ute mounted drill rig and hand auger.				
Investigation Depth	Final bore depths were:				
	• 3.2 mBGL for BH101M;				
	 1.0 mBGL for BH102; 				
	 1.0 mBGL for BH103; 				
	• 1.4 mBGL for BH104;				
	• 0.8 mBGL for BH105;				
	• 0.9 mBGL for BH106;				
	• 0.9 mBGL for BH107;				
	• 1.0 mBGL for BH108;				
	• 1.0 mBGL for BH109;				
	• 1.0 mBGL for BH110;				
	• 0.8 mBGL for BH111;				
	• 1.0 mBGL for BH112;				
	• 1.0 mBGL for BH113;				
	• 0.3 mBGL for BH114;				
	• 7.3 mBGL for BH115M;				
	• 2.0 mBGL for BH116;				
	• 2.0 mBGL for BH117;				
	• 8.0 mBGL for BH118M;				
	• 1.2 mBGL for BH119;				
	• 2.0 mBGL for BH120; and				
	• 1.5 mBGL for BH121.				

Table 6-2 Summary of Soil Investigation Methodology

Activity/Item	Details	
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix E .	
Field Observations	A summary of field observations is provided, as follows:	
(including visual and olfactory signs of	• No fibre cement sheeting was evident in the 21 boreholes drilled across the site;	
potential contamination)	Generally there was no olfactory evidence of contamination.	
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars. 	
	 A small amount of duplicate was collected from each soil samples and placed into zip-lock bag for Photo-ionisation Detector (PID) screening. 	
	 Blind field duplicates was separated from the primary samples and placed into glass jars. 	
	• A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.	
Decontamination Procedures	Auger Equipment - The auger rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials.	
	Sampling Equipment - The equipment were decontaminated between sampling locations with Decon 90 and potable water until instruments were free of all residual materials.	
Sample Preservation	Samples were stored in a chilled (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a Section 7 .	
Management of Soil Cuttings	Soil cuttings were either used as backfill for completed boreholes or disposed in areas of the site not currently in use.	
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 7 .	
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo-ionisation Detector (PID).	

6.5 **GROUNDWATER INVESTIGATION**

The groundwater investigation works conducted at the site are described in **Table 6-3**. Monitoring well locations are illustrated in **Figure 2**. Seepage was not encountered during the investigation and wells were all dry during the following sampling fieldwork.

Table 6-3	Summary of Groundwater Investigation Methodology
	Summary of Groundwater investigation methodology

Activity/Item	Details
Fieldwork	Groundwater monitoring wells were installed and developed on 7-8 January 2019; whereas, water level gauging was conducted on 14 January 2019.

Activity/Item	Details			
Well Construction	Test bores were converted to groundwater monitoring wells as follows:			
	 One, 3.2 m deep, onsite, up-gradient well identified as BH101M; 			
	 One 7 m deep, onsite, down-gradient well identified as BH115M; and 			
	 One, 8 m deep, onsite, down-gradient well identified as BH118M. 			
	Drilled by HartGeo using a ute-mounted solid-flight auger rig. Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix E . Wells were installed to screen the aquifer in the intervals 1.2 to 3.2 mBGL (BH101M), 4 to 7 mBGL (BH115M) and 5 to 8 mBGL (BH118M).			
	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:			
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present; 			
	 Base and top of each well was sealed with a uPVC cap; 			
	 Annular, graded sand filter was used to approximately 300 mm above top of screen interval; 			
	Granular bentonite was applied above annular filter to seal the screened interval;			
	 Cuttings backfill just below ground level; and 			
	 Surface completion comprised of a -0.5 m plastic J-cap closing the well, with a gatic cover at ground level. 			
Well Development	Following drilling works the monitoring wells were found to be dry and therefore could not be completed.			
Well Gauging	Monitoring wells BH101M, BH108M and BH112M were gauged for standing water level (SWL, depth to groundwater) on the 14 January 2019. The wells were found be dry and no groundwater sampling was performed.			

7. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if the data meets the objectives for the project (US EPA 2006). Data quality assessment included an evaluation of the compliance of the field sampling, field and laboratory duplicates and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements. The findings of the data quality assessment in relation to the current investigation at the site are discussed in detail in **Appendix G**.

The QC measures generated from the field sampling and laboratory analytical program are summarised in **Table 7-1**:

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections	
Preliminaries	Data Quality Objectives established	Yes	See DQO/DQI	
Field work	Suitable documentation of fieldwork observations including borehole logs, sample register, field notes, calibration forms	Yes	See Appendices	
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See sample rationale	
	All media sampled and duplicates collected	Yes	Soil vapour not required	
	Use of approved and appropriate sampling methods (soil, groundwater, air quality)	Yes	See methodology	
	Selection of soil samples according to field PID readings (where VOCs are present)	Yes	See methodology	
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See methodology	
	Appropriate Rinsate, Field and Trip Blanks taken	Yes	See methodology	
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See laboratory reports	
Laboratory	Sample holding times within acceptable limits	Yes	See laboratory QA	
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See laboratory report	
	LOR/PQL low enough to meet adopted criteria	Yes	See laboratory appendix	
	Laboratory blanks	Yes	See laboratory QA/QC	
	Laboratory duplicates	Yes	See laboratory QA/QC	

Table 7-1 Quality Control Process

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
	Matrix spike/matrix spike duplicates (MS/MSDs)	Yes	See laboratory QA/QC
	Surrogates (or System Monitoring Compounds)	Yes	See laboratory QA/QC
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD)	Yes	See QA Tables Appendix F
	Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements	Yes	See Appendix E
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See document control

7.1 QUALITY OVERVIEW

On the basis of the field and analytical data validation procedure employed, the overall quality of the analytical data produced for the site was considered to be of an acceptable standard for interpretive use and preparation of a conceptual site model (CSM).

RESULTS

8.

8.1 SITE INVESTIGATION

8.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling (solid flight auger and hand auger) of the soil investigation boreholes was a shallow layer of anthropogenic filling consisting of gravelly clay overlying residual clay and shale bedrock. The geological information obtained during the investigation is summarised in **Table 8-1** and borehole logs from these works are presented in **Appendix E**.

Layer	Description	Depth to top & bottom of layer (mBGL)
Asphalt	-	0.00 - 0.10
Topsoil	Silty clay; low plasticity, dark brown, with trace rootlets, moist and no odour.	0.00 - 0.30
Fill	Silty sand; fine to medium grained, brown, with brick fragments and sub-angular to angular gravels, with rootlets, no odour.	0.10 – 1.50
	Gravelly clay; low plasticity, orange, with sub-angular to angular gravels, no odour.	
Natural	Clay; low to medium plasticity, red, no odour.	0.20 - 2.0
	Clay; medium to high plasticity, grey mottled red, no odour.	
Bedrock	Shale; weathered rock, red, no odour.	1.2 – 8.0 +
	Shale; slightly weathered, grey, no odour.	

Table 8-1 Generalised Subsurface Profile

Notes:

+ Termination depth of borehole

8.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.1 m to 2.0 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal, etc.) and the following observations were noted:

- No visual or olfactory evidence of hydrocarbon impacts were noted at any of the borehole locations investigated during this assessment;
- Fill material was evident within all borehole locations sampled during this investigation, from approx. 0.1 to 1.5 mBGL;
- No fibrous cement sheeting was noted within the fill soil profile at 21 boreholes across the site;
- No slag, charcoal / ash was observed in any of the examined fill soils; and

 No elevated VOC concentrations were detected in soil samples, which were field-screened using a portable PID fitted with a 10.9 eV lamp. The PID results are shown in the borehole logs (Appendix F).

8.2 **GROUNDWATER INVESTIGATION RESULTS**

8.2.1 Monitoring Well Construction

A total of three (3) groundwater monitoring wells (BH101M, BH115M and BH118M) were installed across the site on 7-8 January 2019. These groundwater monitoring wells were used by EI on 14 January 2019 during the groundwater monitoring event (GME). Well construction details for the installed groundwater monitoring wells are summarised in **Table 8-2**.

Bore Depth (mBGL)	Screen Interval (mBGL)	Lithology Screened
3.2	1.2 - 3.2	Shale
7.0	4.0 - 7.0	Shale
8.0	5.0 - 8.0	Shale
	7.0	7.0 4.0 - 7.0

Table 8-2 Monitoring Well Construction Details

Notes:

mBGL - metres below ground level.

8.2.2 Field Observations and Water Test Results

A single GME was conducted on all wells on 14 January 2019.

All three wells are found dry. As a result, no water samples were collected during this investigation.

8.3 LABORATORY ANALYTICAL RESULTS

8.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 8-3**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Tables T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix G** and all laboratory analytical reports for tested soil samples are presented in **Appendix H**.

Table 8-3 Summary of Soil Analytical Results

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Hydrocarbons				
29	Benzene	<0.1	<0.1	None
29	Toluene	<0.1	<0.1	None
29	Ethyl benzene	<0.1	<0.1	None
29	Total xylenes	<0.3	<0.3	None
29	F1	<25	<25	None
29	F2	<25	<25	None
29	F3	<90	<90	None
29	F4	<120	<120	None
PAHs				
29	Carcinogenic PAHs	<0.3	0.4	None
29	Benzo(a)pyrene	<0.1	0.2	None
29	Total PAHs	<0.8	2.6	None
29	Naphthalene	<0.1	<0.1	None
Heavy Metal				
29	Arsenic	<1	130	BH119_0.2-0.3 (130mg/kg) exceeding EIL criteria.
29	Cadmium	<0.3	1.9	None
29	Chromium (Total)	2.5	68	None
29	Copper	0.8	59	None
29	Lead	4	340	None
29	Mercury	<0.05	31	None
2	Methyl Mercury	<0.01	<0.01	None
29	Nickel	<0.5	33	None
29	Zinc	2.8	100	None
OCPs				
19		<1	<1	None
OPPs				
19		<1.7	<1.7	None
PCBs				
19		<1	<1	None
Asbestos				
19	Asbestos	No asbestos detected	No asbestos detected	None

Heavy Metals

As shown in **Table T1**, all heavy metals (HM) concentrations were below the corresponding NEPM 2013 health-based HIL-B&C levels and the ecological based soil criteria (EILs), with the exception of fill sample BH119_0.2-0.3 exceeding the EIL criteria. However the 95% UCL for arsenic in all fill samples was calculated to be 35.26 mg/kg and below the adopted EIL criteria (105mg/kg).

TRHs

As shown in **Table T1**, all total recoverable hydrocarbons (TRH) concentrations were below the corresponding NEPM 2013 health-based HSL-A&B criteria.

BTEX and Naphthalene

As shown in **Table T1**, all BTEX and naphthalene concentrations were below the corresponding NEPM 2013 health-based HSL - A&B criteria.

PAHs

As shown in **Table T1**, all PAHs concentrations were below the corresponding NEPM 2013 healthbased HIL - B&C levels.

OCPs, OPPs and PCBs

As shown in **Table T1**, all OCPs, OPPs and PCBs concentrations were below the corresponding NEPM 2013 health-based HIL-B&C levels.

Asbestos

All tested samples concentrations were below the corresponding NEPM 2013 health-based HIL-A levels.

9. SITE CHARACTERISATION

9.1 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings the CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in **Section 4.6** have largely been addressed; however, the following remaining data gaps require closer in subsequent investigation works:

- The quality of filling and natural soils beneath building structure areas of the site not accessible during this investigation; and
- Potential presence of hazardous materials present within the existing site structures.

9.2 SOIL QUALITY

The drilling completed by EI on 7-8 January 2019, indicated that fill material encountered across the site was within corresponding applicable human health and ecological based criterions.

9.3 GROUNDWATER QUALITY

While groundwater was not encountered and sampled during the investigation, EI consider local groundwater resource is unlikely to represent a significant risk of harm human health or the surrounding environment based on the following points:

- The two underground storage tanks identified in SafeWork NSW records were outside the study area, and approximate 400m north-west and hydraulically down-gradient of the site;
- Potential offsite sources of contamination (i.e. service stations sites) were located hydraulically down-gradient of the site; and
- Mobile contamination sources were not identified in the investigation area, and mobile contaminants, including volatile TRHs and BTEX compounds, were not reported in laboratory analysed soil samples.

In light of the above, further groundwater investigation has not been considered.

10. CONCLUSIONS

The property located at Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW was the subject of a Detailed Site Investigation (DSI) that was conducted in order to assess the nature and degree of onsite contamination associated with current and former uses of the property. Based on the findings of this assessment it was concluded that:

- The site, which fronts Cowan Road to the east, consists of four allotments (Lot 1 DP511821, Lot B DP368565, Lot 1, 2, and 3 DP531533), covering a total area of 10,000 m². The site is occupied by Pymble Golf Club clubhouse and car parking facilities, a bowling green and two residential dwellings;
- Historical records indicated that the proposed development area has been used as part of a golf club since early 1920s. The surrounding areas were predominantly rural-residential with orchard activity up until at least late 1930s. In the early 1940s, the site was further developed as a golf clubhouse and for residential purpose. Site use has remained the same since the 1940s;
- The site was free of statutory notices issued by the NSW EPA and was not recorded on the List of NSW Contaminated Sites Notified to EPA or the POEO register;
- SafeWork NSW records revealed the presence of two underground storage tanks and three roofed store areas for herbicides, fungicides and pesticides on the larger golf course site. However, based on the attached drawing in the records, the locations of the dangerous goods depots were outside the study area, and approximate 400 m north-west and hydraulically downgradient of the proposed development area;
- The sub-surface layers comprised primarily of gravelly clay and silty sand fill materials, overlying residual clays (low to high plasticity) and weathered shale bedrock;
- Soil sampling and analysis were conducted at twenty-one borehole locations (BH101M to BH121) down to a maximum depth of 8.0 mBGL;
 - Soil samples collected and laboratory analysed from the twenty-one borehole locations were below the adopted human-health investigation and ecological criteria.
- Three groundwater monitoring wells (BH101M, BH115M and BH118M) were installed during the investigation. Groundwater was not encountered during the investigation as monitoring wells were dry. Based on information gathered during the PSI (EI, 2018) and laboratory analytical results obtained during this investigation, groundwater is unlikely to represent a significant risk of harm to human health or the environment;
- Based on the investigation findings, the CSM appropriately identified contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Most previously known data gaps have largely been addressed, however, the following data gaps that remain will require closure by further investigation:
 - The quality of soils beneath building structure areas of the site not accessible during this investigation; and
 - Potential presence of hazardous materials present within existing structures on the site.

Based on the findings from of this DSI, conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 12**), contamination exceeding human-health investigation criteria was not identified. While some data gaps remain that require closure by further intrusive investigation, the available quantitative soil data does not indicate the presence of contamination that would preclude the site from being rezoned for residential purposes.

Based on the findings of this investigation, EI consider the site is suitable for the proposed redevelopment, subject to the implementation of a number of recommendations detailed in **Section 11**.

11. RECOMMENDATIONS

Based on the findings of this investigation, the following recommendations are provided:

- Prior to site demolition, carry out a Hazardous Materials Survey on existing site structures to identify potentially hazardous building products that may be released to the environment during demolition;
- Following the completion of demolition works and the removal of demolition debris, a clearance inspection be undertaken by a qualified occupational hygienist and subsequent clearance certificate issued;
- Following demolition, intrusive soil investigation is to be completed within the building footprints of the previously in accessible structures to characterise soil quality;
- Any material being removed from site (including virgin excavated natural materials (VENM)) as part of the proposed development works is to be classified for off-site disposal in accordance the EPA (2014) *Waste Classification Guidelines*;
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Should unexpected finds (contamination) be encountered during redevelopment works a qualified environmental consultant be engaged to inspect the finds and offer appropriate guidance.

12. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

El's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

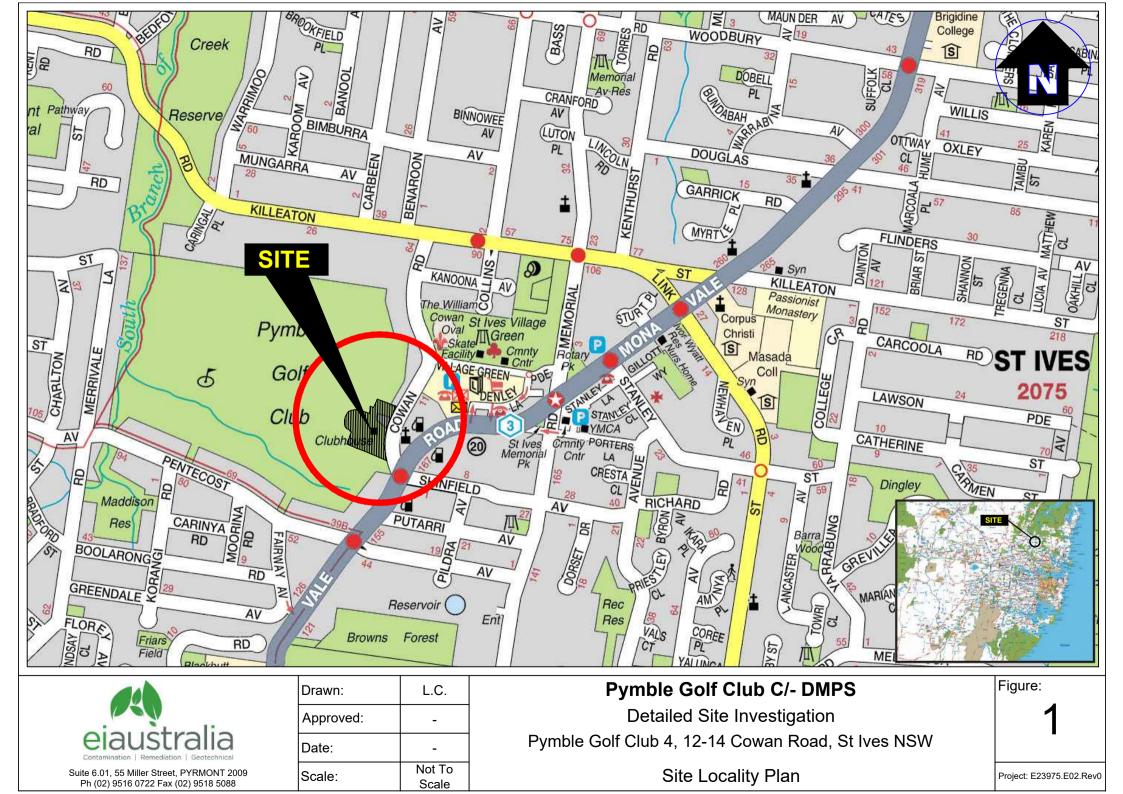
- ANZAST (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, ANZAST, August 2018.
- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) *Soil Landscapes of the Sydney 1:100 000 sheet*, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) Geological Survey of New South Wales, Department of Mineral Resources.
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Ed., EPA 2017P0269/121, October 2017.
- EPA (2000) *Groundwater Sampling Guidelines*, Environment Protection Authority State Government of Victoria, April 2000.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- Murphy C.L. (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by Sydney South Coast, Geographical Information Systems Unit.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) Guidelines for the Use of Acid Sulfate Soil Risk Maps, Department of Land and Water Conservation, Sydney, Second Edition.
- NEMP (2018) *PFAS National Environmental Management Plan*, The Heads of the EPAs Australia and New Zealand (HEPA), January 2018.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- NHMRC (2018) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.5, August 2018.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p.
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.

WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

A 0 M	
ACM	Asbestos-containing materials
ASS	Acid sulfate soils
	Australian and New Zealand and Australian State and Territory Governments
B(a)P	Benzo(a)pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CLM	Contaminated Land Management
COC	Chain of Custody
COPC	Contaminants of Potential Concern
CSM	Conceptual Site Model
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DNAPL	Dense, non-aqueous phase liquid
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
Eh	Redox potential
EIL	Ecological Investigation Level
EMP	Environmental Management Plan
EPA	Environment Protection Authority
ESL	Ecological Screening Level
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)
m	Metres
mAHD	Metres Australian Height Datum
mBGL	Metres Below Ground Level
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
MW	Monitoring well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OCP	Organochlorine Pesticides
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
OPP	Organ-phosphorus Pesticides
PAHs	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyls
PFAS	Per or poly-fluoroalkyl substances



Measure of the acidity or basicity of an aqueous solution pН POEO Protection of the Environment Operations PQL Practical Quantitation Limit (limit of detection for respective laboratory instruments) PSH Phase-separated hydrocarbons (also referred to as LNAPL) QA/QC Quality Assurance / Quality Control SRA Sample receipt advice (document confirming laboratory receipt of samples) SWL Standing Water Level TDS Total dissolved solids (a measure of water salinity) TPH Total Petroleum Hydrocarbons (superseded term equivalent to TRH) TRH Total Recoverable Hydrocarbons (non-specific analysis of organic compounds) UCL Upper Confidence Limit of the mean USEPA United States Environmental Protection Agency UPSS Underground Petroleum Storage Systems UST Underground Storage Tank VOCs Volatile Organic Compounds (specific organic compounds which are volatile)

FIGURES

LEGEND

- _ __ _ Approximate site boundary
 - Approximate borehole location
- \bigcirc \bigcirc Approximate monitoring well boundary
 - Approximate proposed Residential building footprint
 - Approximate proposed new Club house footprint

Drawn:	L.Y.	Pymbl
Approved:	N.F.	Detai Pymble Golf Club
Date:	15/03/2019	San

le Golf Club C/- DMPS ailed Site Investigation 0 4, 12-14 Cowan Road, St Ives NSW

mpling Location Plan

Figure:

2

Project: E23975.E02_Rev1

TABLES

Table T1 - Summary of Soil Analytical results

								Heavy Metal	S					P/	AHs			B1	TEX			т	RH		Pesti	cides		Asbestos
Sample ID	Assessment Criteria	Material	Date	As	Cd	Cr	Cu	РЬ	Hg	Methyl Hg	Ni	Zn	Carcinogenic PAHs (as B(ɑ)P TEQ)	Benzo(α)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	OCPs	OPPs	Total PCBs	Presence / absence
BH101M_0.5-0.6	HIL B/HSL A&B	Natural		6	<0.3	68	1.2	8	0.07	NA	2.6	8.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.
BH102_0.2-0.3	HIL B/HSL A&B	Fill		7	<0.3	21	11	64	0.13	NA	2.9	47	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH102_0.9-1.0 BH103 0.1-0.2	HIL B/HSL A&B	Natural Fill	-	8	<0.3 <0.3	30 35	0.5	10 13	<0.05 <0.05	NA NA	<0.5	5 9.9	< 0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25	<25	<90 <90	<120 <120	N.A. <1	N.A. <1.7	N.A. <1	N.A. No
BH103_0.1-0.2 BH103_0.6-0.7	HIL C/HSL C/EIL/ESL HIL C/HSL C/EIL/ESL	Natural	-	7	<0.3	35	59	13	<0.05	NA	0.5	9.9	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 <25	<90	<120	<1 N.A.	<1.7 N.A.	<1 N.A.	N.A.
BH104_0.2-0.3	HIL C/HSL C/EIL/ESL	Fill		4	<0.3	42	33	41	0.11	NA	33	50	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH105_0.5-0.6	HIL B/HSL A&B	Natural	7/01/2019	6	<0.3	57	1.1	8	<0.05	NA	2.2	7.4	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.
BH106_0.2-0.3	HIL B/HSL A&B	Fill	-	7	<0.3	26	2.2	19	< 0.05	NA	1.4	8.3	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH107_0.5-0.6 BH108_0.1-0.2	HIL B/HSL A&B HIL B/HSL A&B	Natural Fill	1	7	<0.3 <0.3	53 30	1.1 2.4	12	0.06 <0.05	NA NA	1.4 1.4	19 6.9	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	N.A. <1	N.A. <1.7	N.A. <1	N.A. No
BH109_0.2-0.3	HIL C/HSL C/EIL/ESL	Fill	1	7	<0.3	36	2.4	28	<0.05	NA	4.9	15	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH110_0.2-0.3	HIL B/HSL A&B	Fill		7	<0.3	44	5.3	21	0.09	NA	3.3	20	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH111_0.5-0.6	HIL B/HSL A&B	Natural	-	4	<0.3	61	2.1	9	0.07	NA	2.4	8.6	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.
BH112_0.1-0.2 BH113 0.5-0.6	HIL B/HSL A&B HIL C/HSL C/EIL/ESL	Natural		7	< 0.3	34	15	100 14	0.19	NA	3.1	63	< 0.3	0.1	1.6 <0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1 N.A.	<1.7	<1 N.A.	No N.A.
BH113_0.5-0.6 BH114 0.1-0.2	HIL C/HSL C/EIL/ESL	Natural Topsoil	-	32	<0.3	24 18	0.8	41	<0.05 0.59	NA NA	0.6	7.2	<0.3 <0.3	<0.1 <0.1	<0.8	<0.1 <0.1	<0.1	<0.1	<0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	N.A. <1	N.A. <1.7	N.A. <1	N.A. No
BH115M 0.2-0.3	HIL C/HSL C/EIL/ESL	Topsoil	1	17	<0.3	12	9.3	18	0.16	NA	1.6	31	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH116_0.2-0.3	HIL C/HSL C/EIL/ESL	Fill	ļ	4	<0.3	2.5	2.4	4	< 0.05	NA	1.3	7.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH116_0.8-0.9	HIL C/HSL C/EIL/ESL	Fill	4	7	<0.3	3.8	6.8	12	0.59	NA	1.1	20	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH117_0.1-0.2	HIL C/HSL C/EIL/ESL	Fill	-	11	<0.3	5.8	8.6	9	0.16	NA	0.8	9.8	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH117_1.0-1.1 BH117_1.9-2.0	HIL C/HSL C/EIL/ESL HIL C/HSL C/EIL/ESL	Fill Natural	8/01/2019	9	<0.3 <0.3	5.4	11 4.1	9	<0.05 <0.05	NA NA	0.9 <0.5	10 3.2	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1 N.A.	<1.7 N.A.	<1 N.A.	No N.A.
BH118M_0.2-0.3	HIL C/HSL C/EIL/ESL	Fill		8	<0.3	14	5	24	2.40	NA	2.7	100	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No.
BH119_0.2-0.3	HIL D/HSL D	Fill		130	1.9	17	5.3	340	31.00	<0.01	1.4	33	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH119_1.0-1.1	HIL D/HSL D	Natural	4	6	<0.3	4.7	6.8	5	0.35	NA	<0.5	2.8	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.
BH120_0.1-0.2	HIL C/HSL C/EIL/ESL HIL C/HSL C/EIL/ESL	Fill	-	32	0.6 <0.3	11	2.9	44	4.2 <0.05	<0.01 NA	3.2	63 8.1	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<1 <1	<1.7 <1.7	<1 <1	No
BH120_1.4-1.5 BH121_0.2-0.3	HIL C/HSL C/EIL/ESL	Fill	-	21	<0.5	10	12	69	14	NA	2.2	35	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH121_1.4-1.5	HIL C/HSL C/EIL/ESL	Natural		5	<0.3	9.7	6.5	11	< 0.05	NA	<0.5	3.1	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	N.A.	N.A.	N.A.	N.A.
											SI	tatistical Ana	alysis															
05	Maximum concen 5% UCL concentrations - F			130	1.9 NC	68 NC	59 NC	340	31	<0.01	33	100 NG	0.4 NC	0.2 NC	2.6 NC	<0.1	<0.1 NC	<0.1	<0.1	<0.3 NC	<25	<25 NC	<90 NC	<120 NC	<1 NC	<1.7	<1 NC	No NC
90	5% OCL concentrations - P	- III Samples Only		35.26	NC	NC	NC	NC	NC	NC	NC	NC SILs	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	HIL B - Residen	tial		500	150	500 Cr(VI)	30,000	1,200	120	30	1,200	60,000	4		400										600		1	
	HIL C - Recreational/O	pen Space		300	90	300 Cr(VI)	17,000	600	80	13	1,200	30,000	3		300										400		1	
	HIL D - Commercial/I	Industrial		3000	900	3600 Cr(VI)	240,000	1,500	730	180	6,000	400,000	40		4000		T	1	T	1	T	T	1		3600		7	
	HSL A & B - Low to high der	nsity residential							rce depths (0 rce depths (1		-					5 NL	0.7	480 NL	NL NL	110 310	50 90	280 NL	-					
	Soil texture classification								urce depths (1		-					NL	2	NL	NL	310 NL	90	NL	-					
		-								pths (4 m+)						NL	3	NL	NL	NL	290	NL						
									rce depths (0		-					NL	NL	NL	NL	NL	NL	NL						
	HSL C - Recreational/O	· · · ·							rce depths (1		-					NL	NL	NL	NL	NL	NL	NL						
	Soil texture classification	on -clay						Sou	urce depths (2 Source de	2m to <4 m. l pths (4 m+)	BGL)					NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	-					
								Sou	rce depths (0		BGL)					NL	NL 4	NL	NL	NL	NL 310	NL						
	HSL D - Commercial /	Industrial							rce depths (0							NL	6	NL	NL	NL	480	NL						
	Soil texture classification	on – Clay ¹						Sou	urce depths (2		BGL)					NL	9	NL	NL	NL	NL	NL						
					(mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm			-	Source de	pths (4 m+)	1	-				NL	20	NL	NL	NL	NL	NL						
	ESLs - Urban Residential and			105		408	122	1,200			175	255		0.7		170	65	105	125	45	180	120	1300	5600	180			
Manageme	ent Limits – Residential, parkla	and and public open space ¹																			800	1,000	3,500	10,000				

Notes:

All results are recorded in mg/kg (unless otherwise stated)

HIL B	NEPC 1999 Amendment 2013 'HIL B' Health Based Investigation Levels applicable for residential exposure settings with minimal opportunities for garden soil access.
HIL C	NEPC 1999 Amendment 2013 'HIL C' Health Based Investigation Levels applicable for recreational/open space settings.
HIL D	NEPC 1999 Amendment 2013 'HIL D' Health Based Investigation Levels applicable for commercial/Industrial.
HSL A&B	NEPC 1999 Amendment 2013 'HSL A&B' Health Based Screening Levels based on vapour intrusion values applicable for low to high density residential settings.
HSL C	NEPC 1999 Amendment 2013 'HSL C' Health Based Screening Levels based on vapour intrusion values applicable for recreational/open space settings.
HSL D	NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels based on vapour intrusion values applicable for commercial / industrial settings.
NA	'Not Analysed' i.e. the sample was not analysed.
NL	'Not Limiting' - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical.
1	Majority of the fill to be found as clayey material. Therefore, fine grained soil (clay) values were applied.
2	EIL criteria is derived from a site specific Added Contaminant Limit (ACL) with the Ambient Background Concentration (ABC) for an old NSW and low traffic suburb. In lack of physiochemical properties for soils across the site, a site specific ACL criteria for heavy metals based on averaged physiochemical properties presented in Chapman and Murphy (2002) for the Glenorie (gn) soil landscape.
F1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
F2	To obtain F2 subtract Naphthalene from the >C10-C16 fraction.
F3	(>C16-C34)
F4	(>C34-C40)

E23975 - St Ives

Table I3	Soil RPD values																E23975 - S	St Ives
	TRH					BTEX				Heavy Metals								
Sample identification	Description	Date	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Duplicate - S	Soil Investigation	-		•		•	•		•		•		•	•				
BH102_0.2-0.3	Site Investigation	7/01/2019	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	7	<0.3	21	11	64	0.13	2.9	47
QD1	BFD of BH102_0.2-0.3	7/01/2019	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	17	39	41	< 0.05	20	42
	RPD	-	0.00	0.00	NA	NA	0.00	0.00	0.00	0.00	54.55	0.00	21.05	112.00	43.81	103.23	149.34	11.24
Inter-laboratory Duplicate - S	Soil Investigation	•				•												
BH102_0.2-0.3	Site Investigation	7/01/2019	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	7	<0.3	21	11	64	0.13	2.9	47
QT1	ILD of of BH102_0.2-0.3	7/01/2019	<25	<50	<100	<100	<0.2	<0.5	<1	<3	5	<0.4	25	26	49	0.1	10	42
	RPD	-	0.00	NA	NA	NA	NA	NA	NA	NA	33.33	NA	17.39	81.08	26.55	26.09	110.08	11.24
Rinsate Blanks		•				•												
BH100_QR1	Equipment rinsate	8/1/2019	<50	<60	<500	<500	<0.5	1	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
Trip Spikes										•							·	
BH100_QTS1	Soil trip spike	8/1/2019	-	-	-	-	[97%]	[95%]	[107%]	[108%]	-	-	-	-	-	-	-	-
Trip Blanks																		
BH100_QTB1	Soil trip blank	8/1/2019	-	-	-	-	<0.1	<0.1	<0.1	< 0.3	-	-	-	-	-	-	-	-

NOTE: All results are reported in mg/kg (soil) or μ g/L (water)

RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005) RPD exceeds 30-50% range referenced from AS4482.1 (2005)

F1 = TRH C6-C10 less the sum of BTEX F2 = TRH >C10-C16 less naphthalene F3 = TRH >C16-C34 F4 = TRH >C34-C40

66.67 52.87

¹ Value shown is the lowest recovery value reported for xylenes

APPENDIX A Proposed Development Plans

Pymble Golf Club
Cowan Rd, St. Ives NSW 2075

	SCALE: 1:500 @ A1
7	
	DRAWING No.
	A100
	ATUU

<u>LEGEND</u>

()

— SITE BOUNDARY

EXISTING CLUB HOUSE

PROPOSED DEVELOPMENT BOUNDARY

TREE PROTECTION ZONE (TPZ) RADIUS

STRUCTURAL ROOT ZONE (SRZ) RADIUS

TREES MUST BE RETAINED (BIODIVERSITY MAPPED)

OTHER TREES TO BE RETAINED

RESIDENTIAL FENCING

PEDESTRIAN RESIDENTIAL ENTRY

BALCONY / TERRACE

PRELIMINARY

JOB NO: 1415 REV H

Н	CLIENT REVIEW	12.02.2019
G	FOR REVIEW	22.01.2019
F	COUNCIL REVIEW	04.12.2018
E	DRAFT FOR LIENT REVIEW	21.11.2018
D	DRAFT FOR CLIENT REVIEW	16.10.2018
С	DRAFT	12.10.2018
ISSUE	AMENDMENT DESCRIPTION	DATE

INDICATIVE DESIGN_LEVEL 1

<u>LEGEND</u>

- SITE BOUNDARY
- EXISTING CLUB HOUSE
- PROPOSED DEVELOPMENT BOUNDARY
- TREE PROTECTION ZONE (TPZ) RADIUS
- STRUCTURAL ROOT ZONE (SRZ) RADIUS
- TREES MUST BE RETAINED (BIODIVERSITY MAPPED)
- OTHER TREES TO BE RETAINED
- **RESIDENTIAL FENCING**
- PEDESTRIAN RESIDENTIAL ENTRY

BALCONY / TERRACE

JOB NO: 1415 REV H

Н	CLIENT REVIEW	12.02.2019
G	FOR REVIEW	22.01.2019
F	COUNCIL REVIEW	04.12.2018
E	DRAFT FOR LIENT REVIEW	21.11.2018
D	DRAFT FOR CLIENT REVIEW	16.10.2018
С	DRAFT FOR CLIENT REVIEW	10.10.2018
ISSUE	AMENDMENT DESCRIPTION	DATE

Pymble Golf Club
Cowan Rd, St. Ives NSW 2075

LEGEND

5

- SITE BOUNDARY

EXISTING CLUB HOUSE

PROPOSED DEVELOPMENT BOUNDARY

TREE PROTECTION ZONE (TPZ) RADIUS

STRUCTURAL ROOT ZONE (SRZ) RADIUS

TREES MUST BE RETAINED (BIODIVERSITY MAPPED)

OTHER TREES TO BE RETAINED

RESIDENTIAL FENCING

PEDESTRIAN RESIDENTIAL ENTRY

BALCONY / TERRACE

COWAN ROAD PRELIMINARY

JOB NO: 1415

G	CLIENT REVIEW	12.02.2019
F	FOR REVIEW	22.01.2019
E	COUNCIL REVIEW	04.12.2018
D	DRAFT FOR LIENT REVIEW	21.11.2018
С	DRAFT FOR CLIENT REVIEW	16.10.2018
В	DRAFT FOR CLIENT REVIEW	10.10.2018
ISSUE	AMENDMENT DESCRIPTION	DATE

INDICATIVE DESIGN_LEVEL 3

LEGEND

- SITE BOUNDARY
- EXISTING CLUB HOUSE

PROPOSED DEVELOPMENT BOUNDARY

TREE PROTECTION ZONE (TPZ) RADIUS

- STRUCTURAL ROOT ZONE (SRZ) RADIUS
- TREES MUST BE RETAINED (BIODIVERSITY MAPPED)
- OTHER TREES TO BE RETAINED
- RESIDENTIAL FENCING
- PEDESTRIAN RESIDENTIAL ENTRY

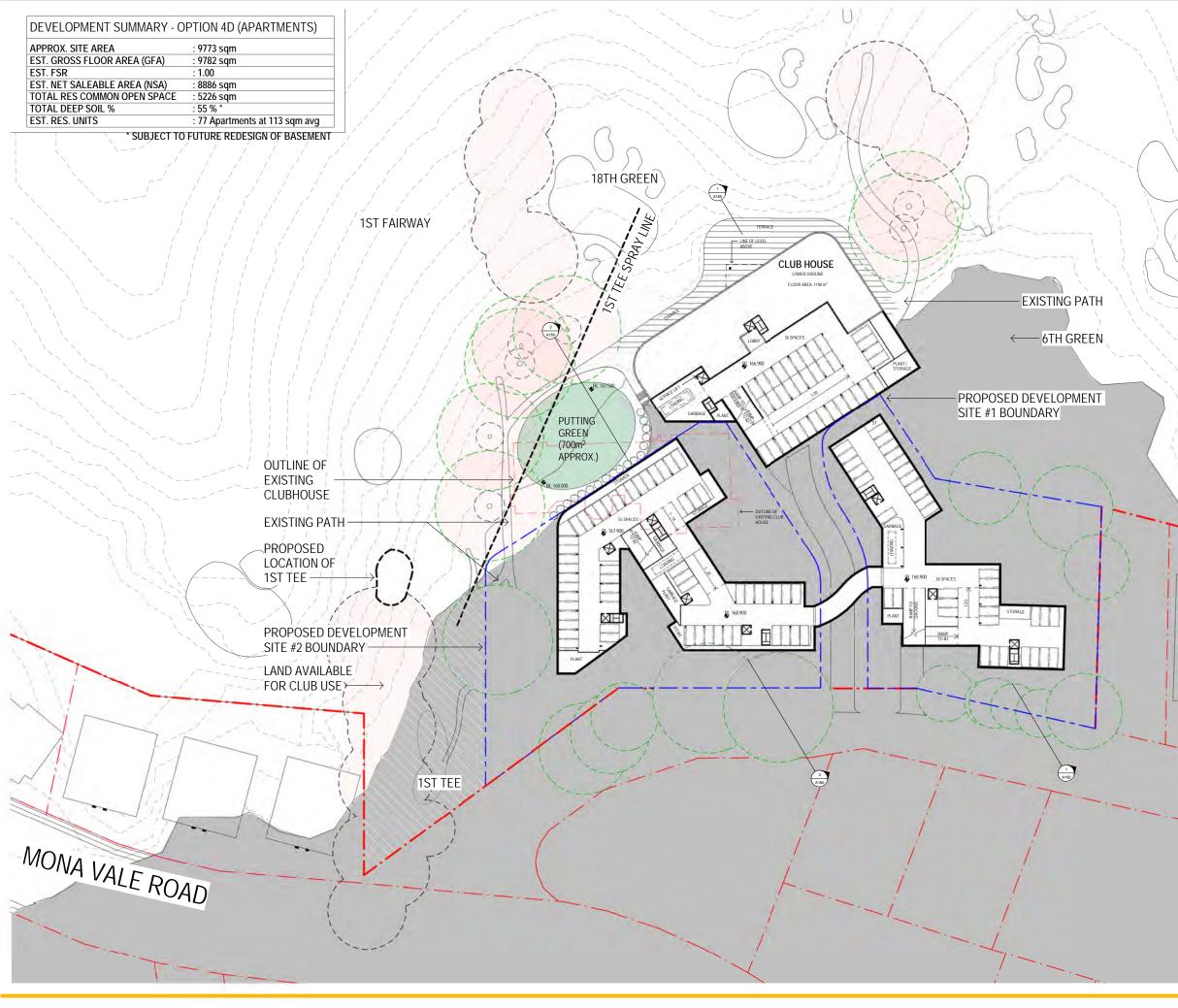
BALCONY / TERRACE

JOB NO: 1415 REV G

G	CLIENT REVIEW	12.02.2019
F	FOR REVIEW	22.01.2019
E	COUNCIL REVIEW	04.12.2018
D	DRAFT FOR LIENT REVIEW	21.11.2018
С	DRAFT FOR CLIENT REVIEW	16.10.2018
В	DRAFT FOR CLIENT REVIEW	10.10.2018
ISSUE	AMENDMENT DESCRIPTION	DATE

Pymble Golf Club
Cowan Rd, St. Ives NSW 2075

INDICATIVE DESIGN_LEVEL 4 0 m 10 20 30



- TREES MUST BE RETAINED (BIODIVERSITY MAPPED)

JOB NO: 1415 ^{REV}

G	CLIENT REVIEW	12.02.2019
F	FOR REVIEW	22.01.2019
E	COUNCIL REVIEW	04.12.2018
D	DRAFT FOR LIENT REVIEW	21.11.2018
С	DRAFT FOR CLIENT REVIEW	16.10.2018
В	DRAFT FOR CLIENT REVIEW	10.10.2018
ISSUE	AMENDMENT DESCRIPTION	DATE

0 m 10 20 30

<u>LEGEND</u>

1

- SITE BOUNDARY

- EXISTING CLUB HOUSE

PROPOSED DEVELOPMENT BOUNDARY

TREE PROTECTION ZONE (TPZ) RADIUS

STRUCTURAL ROOT ZONE (SRZ) RADIUS

TREES MUST BE RETAINED (BIODIVERSITY MAPPED)

OTHER TREES TO BE RETAINED

RESIDENTIAL FENCING

PEDESTRIAN RESIDENTIAL ENTRY

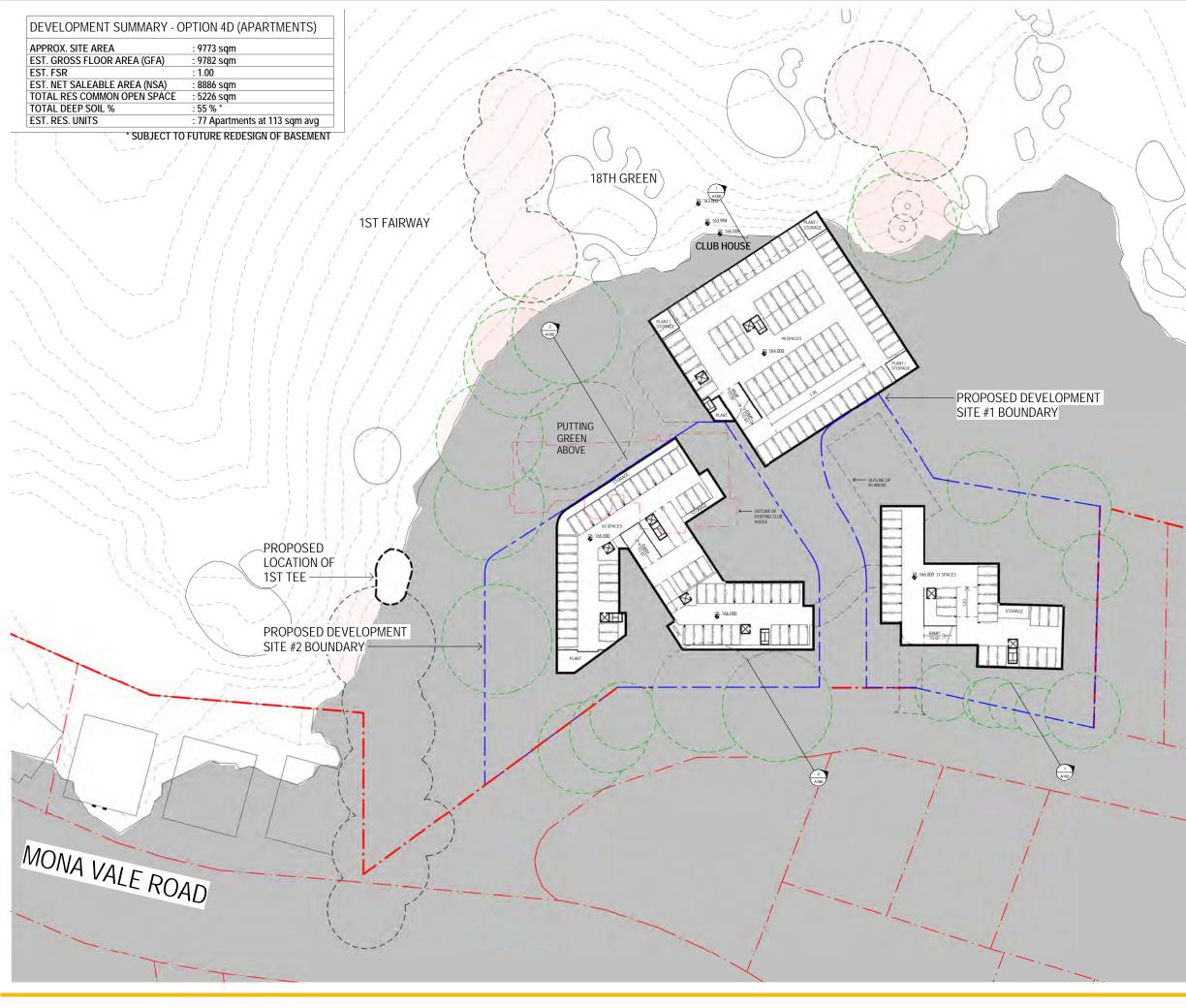
BALCONY / TERRACE

 JOB NO: 1415
 E
 CLIENT REVIEW
 12.02.2019

 D
 FOR REVIEW
 22.01.2019
 C

 D
 FOR REVIEW
 16.0.2018
 B

 D
 DRAFT FOR CLIENT REVIEW
 16.0.2018
 B


 A
 DRAFT FOR CLIENT REVIEW
 10.10.2018
 A

 A
 DRAFT FOR CLIENT REVIEW
 08.10.2018
 B

 ISSUE MARDIMENT DESCRIPTION
 DAFT
 C
 C

PRELIMINARY

INDICATIVE DESIGN_BASEMENT 2

<u>LEGEND</u>

()

— SITE BOUNDARY

EXISTING CLUB HOUSE

- PROPOSED DEVELOPMENT BOUNDARY

TREE PROTECTION ZONE (TPZ) RADIUS

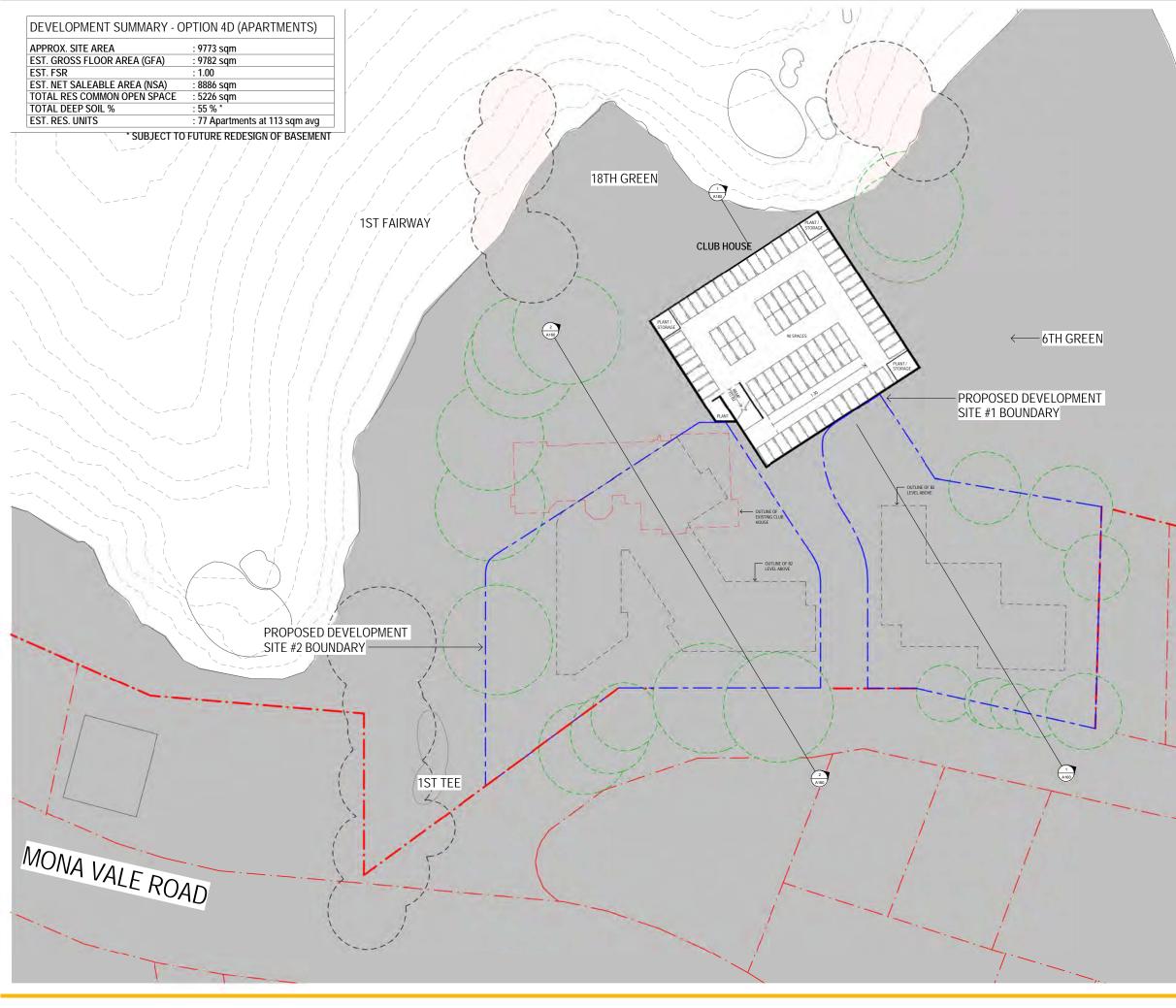
STRUCTURAL ROOT ZONE (SRZ) RADIUS

TREES MUST BE RETAINED (BIODIVERSITY MAPPED)

OTHER TREES TO BE RETAINED

RESIDENTIAL FENCING

PEDESTRIAN RESIDENTIAL ENTRY


BALCONY / TERRACE

PRELIMINARY

	JOB NO: 1415			-	
	JOBINC	. 1415			
				CLIENT REVIEW	12.02.2019
	E		D	FOR REVIEW	22.01.2019
			C	DRAFT FOR CLIENT REVIEW	16.10.2018
			B	DRAFT FOR CLIENT REVIEW	10.10.2018
			A	DRAFT FOR CLIENT REVIEW	08.10.2018
			ISSUE	AMENDMENT DESCRIPTION	DATE

<u>LEGEND</u>

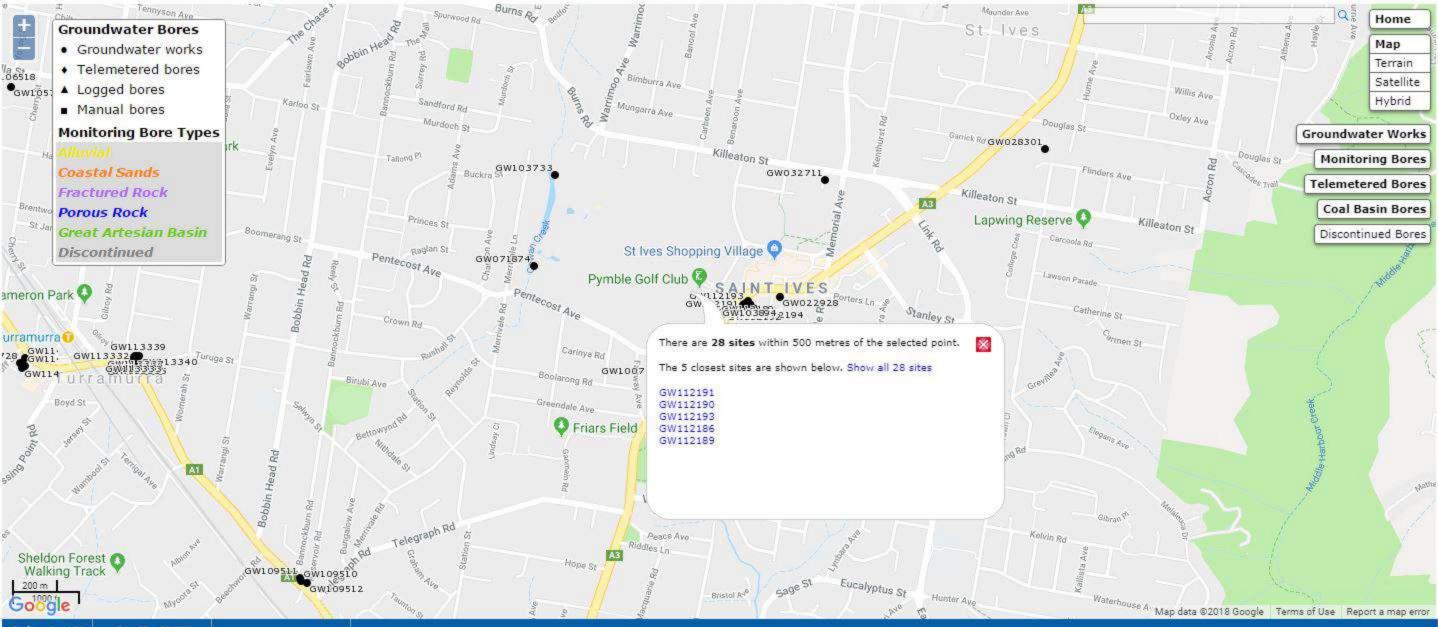
5

/

- SITE BOUNDARY
- EXISTING CLUB HOUSE
- PROPOSED DEVELOPMENT BOUNDARY
- TREE PROTECTION ZONE (TPZ) RADIUS
- STRUCTURAL ROOT ZONE (SRZ) RADIUS
- TREES MUST BE RETAINED (BIODIVERSITY MAPPED)
- OTHER TREES TO BE RETAINED
- RESIDENTIAL FENCING
- PEDESTRIAN RESIDENTIAL ENTRY

BALCONY / TERRACE

PRELIMINARY


	JOB NO: 1415			-	
	JOBINC	7. 1413			
			E	CLIENT REVIEW	12.02.2019
		REV	D	FOR REVIEW	22.01.2019
		F		DRAFT FOR CLIENT REVIEW	16.10.2018
		E	B	DRAFT FOR CLIENT REVIEW	10.10.2018
			A	DRAFT FOR CLIENT REVIEW	08.10.2018
			ISSUE	AMENDMENT DESCRIPTION	DATE

APPENDIX B

NSW Office of Water Groundwater Bore Search

APPENDIX C Site Photographs

Photograph 1: The car parking facilities at the middle portion of the site (7/1/2019).

Photograph 2: Residential dwelling at the northern portion of the site (7/1/2019).

Photograph 3: Clubhouse at the south western portion of the site (7/1/2019).

Photograph 4: Bowling green area at the western portion of the site (8/1/2019).

Photograph 5: In-situ soil material encountered onsite (7/1/2019).

Photograph 6: Residential dwelling at the northern portion of the site (7/1/2019).

Photograph 7: Gravel vacant area at the rear of dwellings (7/1/2019).

APPENDIX C Borehole Logs

		(2										TEST: BH	101M
	Cor	eia Itaminat	AU tion R	str	Geotechnic	Position Job No.	Pym Refe E239		lf Clu jure 2 2	Contractor HartGeo Pty I		g	Sheet Date Started Date Completed Logged SL Checked	1 OF 1 7/9/19 7/9/19 Date: Date:
F			Dril	ling		Sampling				Field Material Desc	riptic	on		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	PIEZOMETER DE ID Static Water Level BH101M E E E E E E E E E E E E E	TAILS
				0.0	0.10			\bigotimes	-	ASPHALT Fill: Gravelly CLAY; low plasticity, orange, with sub-angular to	D			
EA LIB 1.03.GLB Log IS AU BOREHOLE 3 E2875.E02.GPJ <-Chawner/Pile>> 0901/201917.25 10.0000 DageLab and h Stu Tool - DGD Ub: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05	AD/I		GWNE		0.10 0.20 1.20 3.20	BH101M_0.2-0.3 ES PID = 0.8 ppm			- CL- CI	Fill: Gravely CLAY; low plasticity, orange, with sub-angular to angular gravels, no odour. CLAY; low to medium plasticity, red, no odour. SHALE; weathered rock, red, no odour.	M			Sentonite
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E2:				- - 4.0 —		This boreh	ole lo	ng shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	25.	

Г

•	eia		str	alia	Project Location Position Job No. Client	Pym Refe E239		olf Clu gure 2)2	Contractor HartGeo Pty I	_td		Sheet Date S Date C Loggeo Checke	arted ompleted SL	1 OF 1 7/9/19	
		Dri	lling		Sampling	1			Field Material Desc	rintic	n				_
METHOD	PENETRATION RESISTANCE	1	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STR A OB	UCTURE DDITION SERVATI	AL	
EALIB 103.GLB Log IS AUBOREHOLE 3 E23975.E02.GPU <-DawngFlex> 0801/2019.17.25 10.0.000 DageLaband In Stu Tool-DGD LUb EIA 1.03 2014-07-05 Prj. EIA		GWNE	<u> </u>	0.10 0.50	BH102_0.2-0.3 ES PID = 1.3 ppm BH102_0.9-1.0 ES PID = 0.5 ppm				ASPHALT Fill: Gravelly CLAY; low plasticity, orange, with sub-angular to angular gravels, no odour. CLAY; low to medium plasticity, red, no odour. Hole Terminated at 1.00 m Target depth reached.			NATURAL			
HOLE 3 E23975.E02.GPJ < <drawingfile></drawingfile>			-	-											
EIA LIB 1.03.GLB Log IS AU BOR			2.0 —		This bore	ehole Ic	og sho	uld be	read in conjunction with EI Australia's accompanying sta	ndaro	d note	es.			

BOREHOLE: BH103

			JST Remediation	Geotachri	Project Location Position Job No. Client	Pym Refe E239		lf Clu jure 2 2	Contractor HartGeo Pty		g	Sheet1 OF 1Date Started7/9/19Date Completed7/9/19LoggedSLDate:Date:CheckedDate:	
		D	rilling		Sampling				Field Material Des				_
METHOD	PENETRATION	RESISTANCE WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
EA LUB 1.00.GLB. Log. IS AU BOREHOLE 3 E23075.E02.GPJ <-DrawingFile>> 080/1/2019.17.25 10.0000 DageILab and In Stu Tool - DGD Lib: EIA 1.03 2014-07-05 M		GWNE GWNE	0.0	RL 0.20 1.00	BH103_0.1-0.2 ES PID = 1.6 ppm BH103_0.6-0.7 ES PID = 1.1 ppm			CL-CI	Fill: Gravelly CLAY; low plasticity, orange, with sub-angular to angular gravels, no odour. CLAY; low to medium plasticity, red, no odour. Hole Terminated at 1.00 m Target depth reached.			FILL NATURAL	
EIA LIB 1.03.GLB Log IS AU I			2.0 -		This bore	hole lo	og shou	ıld be	e read in conjunction with EI Australia's accompanying st	andaro	d note	25.	

		6	R								E	30	REHOLE: BH104
	e	ia		str	alia	Project Location				estigation o 4, 12-14 Cowan Road, St Ives			Sheet 1 OF 1
						Position Job No.		r to Fiq 975.E0		2 Contractor HartGeo Pty L	td		Date Started7/9/19Date Completed7/9/19
						Client		ble Go		b Drill Rig Ute-mounted [9	Logged SL Date:
╞										Inclination -90°			Checked Date:
	z	2	Dril	ling		Sampling			Ы	Field Material Desc			
METHOD		RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTEN DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	T			0.0 —] -	Fill: Gravelly CLAY; low plasticity, orange, with sub-angular to			FILL
				_				\bigotimes	×	angular gravels, no odour.			
								\bigotimes	×				
				-		BH104_0.2-0.3 ES		\bigotimes	×				
						PID = 1.4 ppm		\bigotimes					
				-				\bigotimes					
				-				\bigotimes	×				
								\bigotimes	×				
				0.5 —				\bigotimes	×				-
				_				\bigotimes	×				
								\bigotimes	×				
AD/T		-	GWNE	-	0.70				CL- CI	CLAY; low to medium plasticity, red, no odour.	м	-	NATURAL
				_				<u> </u>					
								F					
17-05				-				=	-				
03 2014-0													
Prj: EIA 1				1.0 —									_
014-07-05				-				<u> </u>	-				
EIA 1.03 2								E					
OGD LIb:				-		BH104_1.2-1.3 ES PID = 1 ppm							
itu Tool - [-									
ab and In S								[
EA LIB 103 GLB Log IS AU BOREHOLE 3 E2875,E02. GPJ < <drawingfile>> 08/01/2019 17:25 10.0000 Daigel Laband In Siu Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05</drawingfile>	+	\neg			1.40		+	—	-	Hole Terminated at 1.40 m Target depth reached.	\square		
25 10.0.00				1.5 —									-
1/2019 17:													
e>> 09/0				-									
DrawingFi				-									
2.GPJ <<													
=23975.E0				-									
HOLE 3 F													
AU BORE				-									
LB Log IS				2.0 —									
LIB 1.03.GI						This bore	hole lo	g sho	uld be	read in conjunction with EI Australia's accompanying sta	ndaro	d note	es.
EIA													

BOREHOLE: BH105

eiau	Bernecilation	alia	Project Location Position Job No. Client	Pyml Refe E239	iled Sit ble Go r to Fig 975.E0 ble Go	lf Clul jure 2 2	ion -14 Cowan Road, St Ives Contractor Drill Rig Inclination	HartGeo Pty L Ute-mounted D -90°		Dat Log	eet e Started e Completed iged SL ecked	1 OF 1 7/9/19 7/9/19 Date: Date:	
Dri	illing		Sampling				Fiel	ld Material Desci	ription				
PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCR	RIPTION	MOISTURE CONDITION CONSISTENCY DENSITY		STRUCTURE ADDITION/ OBSERVATIO	AL .	
	ר 0.0 ר				∇	1 -				FILL			1

	METHOD	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0	0.10				- CL-	ASPHALT			FILL
				_	-				CI	CLAY; low to medium plasticity, red, no odour.			-
				-	-								-
!	AD/T	-	GWNE	-	-						D	-	
				0.5 —	-	BH105_0.5-0.6 ES PID = 0.5 ppm							-
				-									
_					0.80					Hole Terminated at 0.80 m			
7-05				-	-					Hole Terminated at 0.80 m Target depth reached.			-
rj: EIA 1.03 20144				1.0 —	-								-
1.03 2014-07-05 P				-	-								-
ol - DGD Lib: EIA				-	-								
il Laband in Situ Tool - DGD Lib: ElA 1.03 2014-07-05 Prj: ElA 1.03 2014-07-05				-	-								
				- 1.5—									-
 09/01/2019 17:25 10.0.000 Datg 				-	-								
J < <drawingfile>></drawingfile>				-	-								-
3 E23975.E02.GP.				-									
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23975.E02.GPJ				-									
3 1.03.GLB Log IS				2.0—		This boreho	ole lo	g shou	Ild be	read in conjunction with El Australia's accompanying star	 ndaro	l 1 note	25.
EIA LIE													

H106

e	eia		str	alia	Project Location Position Job No. Client	Pymb Refe E239		lf Clui jure 2 2	Contractor HartGeo Pty L	td		REI	Sheet Date Started Date Completed Logged SL	1 OF 1 7/9/19 7/9/19 Date:
					1				Inclination -90°				Checked	Date:
		_	ling		Sampling				Field Material Desc			1		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY		STRUCTURE ADDITION OBSERVATI	AL
			0.0 —					-	ASPHALT			FILL		
			-	0.10			×	-	Fill: Gravelly CLAY; low plasticity, orange, with sub-angular to angular gravels, no odour.					
			-		BH106_0.2-0.3 ES PID = 1.8 ppm		\bigotimes							
			-	0.30				CL- Cl	CLAY; low to medium plasticity, red, no odour.	-		NATUR	AL	
AD/T	-	GWNE		0.90	BH106_0.7-0.8 ES PID = 1.6 ppm				Hole Terminated at 0.90 m	М	-			
			1.0 — - -						Target depth reached.					
			- 1.5—											

2.0

This borehole log should be read in conjunction with El Australia's accompanying standard notes.

BOREHOLE: BH107

Project	Detailed Site Investigation
Location	Pymble Golf Club 4, 12-14 Cowan Road, St Ives
Position	Refer to Figure 2

Job No. Client

E23975.E02

Pymble Golf Club

HartGeo Pty Ltd Contractor Drill Rig Ute-mounted Drill rig Inclination -90°

Sheet	1 OF ⁻
Date Started	7/9/19
Date Completed	7/9/19
Logged SL	Date:
Checked	Date:

9

1

Drilling Sampling						Sampling		Field Material Description							
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
E23975 EC8 CP1 <-ChamingFie>> 08001/2019 17:26 10 0.0000 DaligeLab and In Silu Tool - DGD Lib: EIA 1.03 2014-077-05 Pig EIA 1.03 2014-077-05	AD/T AD/T AD/T	PENETR PENET	GWNE GWNE	HAB 0.0	0.90 0.90	FIELD TEST			ASPHALT CLAY; low to medium plasticity, red, no odour. Hole Terminated at 0.90 m Target depth reached.			FILL NATURAL			
LIB 1.03.GLB Log IS AU BOREHOLE 3				2.0 —	-	This borehol	le log sho	uld be	e read in conjunction with El Australia's accompanying sta	ndaro	d note	es.			
ШA															

BOREHOLE: BH108

Project	Detailed Site Investigation
Location	Pymble Golf Club 4, 12-14 Cowan Road, St Ives
Position	Refer to Figure 2
Job No.	E23975.E02 Co

Client

Pymble Golf Club

Contractor HartGeo Pty Ltd Drill Rig Ute-mounted Drill rig Inclination -90°
 Sheet
 1 OF 1

 Date Started
 7/9/19

 Date Complete
 7/9/19

 Logged
 SL

 Checked
 Date:

		_	ling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0	0.10	BH108_0.1-0.2 ES		\bigotimes	-	ASPHALT Fill: Gravelly CLAY; low plasticity, orange, with sub-angular to angular gravels, no odour.			FILL
			-		PID = 1.7 ppm		\bigotimes		angular gravels, no odoùr.	D		
			-	0.40			\bigotimes					
	-	GWNE	0.5 —					CI- CH	CLAY; medium to high plasticity, red, no odour.		-	NATURAL
			-									
			-		BH108 0.8-0.9 ES					М		
			-		BH108_0.8-0.9 ES 0.80-0.90 m							
_			—1.0—	1.00					Hole Terminated at 1.00 m Target depth reached.	-		
			-						raigei depin reached.			
			-									
			-									
			1.5 —									
			-									
			-									
			-									
			2.0 —		This borehol	le lo	g shou	ld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	25.

EA LIB 1.03.GLB LQ8 IS AU BOREHOLE 3 E23875.E20.GPJ <-ChrawingFile>> 0801/201917.28 10.0000 Batgel Lab and in Siu Tool - DGD | Lib: EA 1.03 2014-07-05 Prj: EA 1.03 20

1.5 -

2.0

	6	A								E	30	REHOLE: BH109
1	Ni-		ctr	olis	Project	Deta	iled Sit	e Inv	estigation			
0	ritaminat		SU	alia	Location	Pym	ble Gol	f Clul	o 4, 12-14 Cowan Road, St Ives			Sheet 1 OF 1
					Position	Refe	r to Fig	jure 2				Date Started 7/9/19
					Job No.	E239	975.E0	2	Contractor HartGeo Pty L	td		Date Completed 7/9/19
					Client	Pym	ble Gol	f Clul	D Drill Rig Ute-mounted D	rill rig	I	Logged SL Date:
									Inclination -90°			Checked Date:
		Dril	ling	-	Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —				\boxtimes	-	ASPHALT			FILL
				0.10			\bigotimes					
			-	0.10			\bigotimes	-	Fill: Gravelly CLAY; low plasticity, brown, with sub-angular to	1		
							\bowtie		angular gravels and ironstone, no odour.			
			-	-	BH109 0.2-0.3 ES		\bigotimes			D		
					PID = 1.3 ppm		\boxtimes					
			_				\boxtimes					
							\mathbb{W}					
				0.40			\bigotimes					
			-	0.40				CI-	CLAY; medium to high plasticity, red, no odour.			NATURAL
								СН				
AD/I	-	GWNE	0.5 —				<u> </u>				-	
⋖		ΰ					[
			-	1			[<u> </u>					
			-	-	BH109_0.7-0.8 ES					м		
					PID = 1.3 ppm							
			_									
							[
							<u> </u>					
			-				<u> </u>					
			-1.0-	1.00		_	<u> </u>					
									Hole Terminated at 1.00 m Target depth reached.			
			-									

This borehole log should be read in conjunction with El Australia's accompanying standard notes.

eiaustralia Contamination Remediation Geotechnical

BOREHOLE: BH110

Project	Detailed Site Investigation	
Location	Pymble Golf Club 4, 12-14 Cowan Road, St I	ves
Position	Refer to Figure 2	
Job No.	E23975.E02	Co

Job No. Client

Pymble Golf Club

Contractor HartGeo Pty Ltd Ute-mounted Drill rig Drill Rig Inclination -90°

Sheet	1 OF ⁻
Date Started	7/9/19
Date Completed	7/9/19
Logged SL	Date:
Checked	Date:

Date:

1

			Dril	ling		Sampling				Field Material Desc				
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0.0	0.10	BH110_0.2-0.3 ES PID = 2.1 ppm			-	ASPHALT Fill: Gravelly CLAY; low plasticity, orange, with sub-angular to angular gravels, no odour.	D		FILL	
	AU/I	-	GWNE		-				CL- CI	CLAY; low to medium plasticity, red, no odour.	м	-	NATURAL	
A 1.03 2014-07-05					1.00	BH110_0.9-1.0 ES PID = 1.8 ppm								
0: EIA 1.03 2014-07-05 Prj: EIA				-	-					Hole Terminated at 1.00 m Target depth reached.				
Dang In Situ 1001 - DGD LI				-	-									
17:26 10.0.000 Datgel La				- 1.5 —	-									
JrawingFile>> 09/01/2019				-	-									
3 E23975.E02.GPJ < <l< th=""><td></td><td></td><td></td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>				-	_									
LOG IS AU BOREHOLE				2.0—	-									
EIA LIB 1.03.GLB				2.0		This boreho	ole loç	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	35.	

BOREHOLE: BH111

1	Dia		ctr	alia	Project	Deta	iled Si	te Inv	estigation								
0	CIC:	IU R	SU	Geotechnic	Location	Pym	ble Go	olf Clu	b 4, 12-14 Cowan Road, St Iv	es					Sheet	1 OF 1	
1000					Position	Refe	r to Fig	gure	2						Date Started	7/9/19	
					Job No.	E239	975.E0)2		Contractor	HartGeo Pty Lt	d			Date Completed	7/9/19	
					Client	Pym	ble Go	olf Clu	b	Drill Rig	Ute-mounted D	rill rig	1		Logged SL	Date:	
						-				Inclination	-90°				Checked	Date:	
		Dril	lling		Sampling					Fiel	d Material Descr	iptio	n				_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATER	RIAL DESCR	IPTION	MOISTURE	CONSISTENCY DENSITY		STRUCTURE ADDITION, OBSERVATI	AL	
			0.0 —				\mathbb{K}	- }	Topsoil: Silty CLAY; low plasticity	, black, with gra	ass and rootlets,			FILL			Γ
			-	0.10				CL- CI	no odour. CLAY; low to medium plasticity, r	ed, no odour.		D		NATUR	AL		

T.C.V	 GWNE	- - 0.5 -	0.80	BH111_0.5-0.6 ES PID = 1.5 ppm			5		M	-		
< <drawingfile>> 08/01/2019 17:28 10.0.000 DatgeLaband In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05</drawingfile>		1.0						Hole Terminated at 0.80 m Target depth reached.				
EA LIB 1.03.0LB Log IS AU BOREHOLE 3 E23975.E02.0PJ <-ChrawingFile>> 09/01/2019.17.26 10.0000 DatgetLab and			-									- - -
EIA LIB 1.03.GLB Log IS AU		2.0—		This boreho	le log	ı shoul	d be	read in conjunction with EI Australia's accompanying star	ndarc	l note	es.	

		R	9	12	Project	Dete	ilad Cit	a Inv	estigation	E	30	REHOLE: BH112
	ela	BU R	str		cal	Pym	ole Gol	f Clu	o 4, 12-14 Cowan Road, St Ives			Sheet 1 OF 1
					Position Job No.		r to Fig 175.E0		Contractor HartGeo Pty	l td		Date Started 7/9/19 Date Completed 7/9/19
					Client		ole Gol				g	Logged SL Date:
					1				Inclination -90°			Checked Date:
_	7	-	ling		Sampling			۲	Field Material Desc			
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —	0.10				-	Topsoil: Silty CLAY; low plasticity, black, with grass and rootlets, no odour.			FILL
					BH112_0.1-0.2 ES PID = 1.9 ppm			CL- CI	CLAY; low to medium plasticity, red, no odour.			NATURAL
			-	-								
			-									
AD/T		GWNE	0.5							м		
AL		9 Q	0.5									
			-									
					BH112_0.7-0.8 ES PID = 2.1 ppm							
			-									
014-07-05												
EIA 1.03 2			—1.0—	1.00					Hole Terminated at 1.00 m			
-07-05 Prj			_						Target depth reached.			
v 1.03 2014												
D LIB: EI/			-									
Tool - DG												
and In Situ												
Datgel Lab			-									
10.0.000			1 5									
2019 17:26			1.5 —									
>> 09/01/			-									.
DrawingFilk												
2.GPJ <<			-									
E23975.E0			-									.
EHOLE 3												
IS AU BOR			-									
EA LIB 103 CLB L0g IS AU BORE HOLE 3 E22875 E02 GPJ < < DrawingFile>> 08/01/2019 17:26 10.0000 Daige Labard In Situ Tool - DGD LIE EA 103 2014-07-05 Prj: EIA 103 201			2.0 —	<u> </u>	 This boreł	nole lo	g shou	ld be	read in conjunction with EI Australia's accompanying sta	andaro	 d note	es.

BOREHOLE: BH113

1 OF 1

Drilling	Sampling				Fiel	d Material Description		
					Inclination	-90°	Checked	Date:
	Client	Pyml	ble Golf Club	I	Drill Rig	Ute-mounted Drill rig	Logged SL	Date:
	Job No.	E239	975.E02	(Contractor	HartGeo Pty Ltd	Date Completed	8/1/19
	Position	Refe	r to Figure 2				Date Started	8/1/19
Remediation Geotechnica		Pyml	ble Golf Club 4, 12-	-14 Cowan Road, St Ive	s		Sheet	1 OF
ustralia	Project	Deta	iled Site Investigati	on				

			Dril	ling		Sampling				Field Material Desc			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	ADIT ADIT		GWNE		0.10 0.10	BH113_0.5-0.6 ES PID = 1.6 ppm			SN - CL-C	ASPHALT CLAY; low to medium plasticity, red, no odour. Hole Terminated at 1.00 m Target depth reached.	M		FILL . NATURAL . . .
EIA LIB 1.03.GLE						This borehole	e log s	houl	ld be	read in conjunction with EI Australia's accompanying star	ndaro	d note	9S.

EA LB 1.03.GLB Log IS AUBOREHOLE 3 E23975.E02.GPJ <<CrawingFies> 08/01/2019.17.28 10.0000 Datgel Lab and n Siu Tool-DGD | Lix EI A 1.03 2014-07-05 Pr; EI A 1.03 Pr

2.0 -

BOREHOLE: BH114

e	eia		str	Geotechnic	Project Location Position Job No. Client	Pym Refe E239		lf Clul jure 2 2	Contractor HartGeo Pty	Ltd			Sheet Date Started Date Completed Logged SL Checked	1 OF 1 8/1/19 8/1/19 Date: Date:	
		Dril	lling		Sampling				Field Material Des	criptie	on				-
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY		STRUCTURE ADDITIONA OBSERVATIO	AL	
АН	-	GWNE	- 0.0	0.20	BH114_0.1-0.2 ES PID = 0.9 ppm			-	Topsoil: Silty CLAY; low plasticity, black, with grass and rootlets, no odour.	D	-	FILL			
			0.5	0.30					Hole Terminated at 0.30 m Refusal on pipe.						
			- 1.5 — - -												-

This borehole log should be read in conjunction with El Australia's accompanying standard notes.

		TEST: BH115M
Contamination Remediation Geotechnical Project Location Position Job No. Client	Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives Refer to Figure 2 E23975.E02 Contractor Pymble Golf Club Drill Rig Ute-mounted Drill rig Inclination -90°	Sheet 1 OF 1 Date Started 8/1/19 Date Completed 8/1/19 Logged SL Date: Checked Date:
Drilling Sampling	Field Material Descriptio	on
METHOD PENETRATION PENETRATION MATER	UNDER CONCERNING SOIL/ROCK MATERIAL DESCRIPTION	DI PIEZOMETER DETAILS D Static Water Level BH115M BH115M SI SI S
E E E RL I	Topsoil: Silty CLAY; low plasticity, black, with grass and rootlets, no odour. CL CLAY; low to medium plasticity, red, no odour.	C D T T T T T T T T T T T T T T T T T T
B This bore	hole log should be read in conjunction with El Australia's accompanying standard	d notes.

Г

					, constant	Project Location Position Job No. Client	Refe E239		lf Clui jure 2 2	Contractor HartGeo Pty		9	Sheet1 OF 1Date Started8/1/19Date Completed8/1/19LoggedSLDate:
										Inclination -90°			Checked Date:
	-		Dril	ling		Sampling				Field Material Desc			
METHOD	DENETDATION	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
EALIB 1.03.GLB Log IS AUBOREHOLE 3 E23975.E02.GPU < <drawnpfile>> 0901/2019.17.26 10.0000 DageLab and In Stu Tool-DGD LIb: EA1.03 2014-07-05 Prj; EIA 1.03 2014-07-05 Prj; EIA 1.04 Prj; EIA 1.0</drawnpfile>		-	GWNE		2.00	BH116_0.2-0.3 ES PID = 1.4 ppm BH116_0.8-0.9 ES PID = 1.5 ppm BH116_1.4-1.5 ES PID = 0.9 ppm			- ССН	Fill: Silty SAND; fine to medium grained, brown, with brick fragments and sub-angular to angular gravels, with rootlets, no odour. CLAY; medium to high plasticity, grey mottled red, no odour. CLAY; medium to high plasticity, grey mottled red, no odour. Hole Terminated at 2.00 m Target depth reached.			FILL/TOPSOIL - NATURAL - NATURAL -
EIA LIB 1.03.						This bore	nole lo	g shou	iid be	read in conjunction with EI Australia's accompanying sta	Indar	a note	S.

c	ontamina	ition R	SUI emediation	Geotechnic	Location Position Job No. Client	Refe E239	ole Go r to Fig 75.E0 ble Go	gure 2 2	12-14 Cowan Road, St Ives Contractor HartGeo Pty Drill Rig Ute-mounted Inclination -90°		g	Da Da Lo	heet ate Started ate Complete ogged SL hecked	1 OF 1 8/1/19 d 8/1/19 Date: Date:
		Dril	ling		Sampling				Field Material Des			•		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY		STRUCTUR ADDITIOI OBSERVAT	NAL
AD/T	-	GWNE	0.0		BH117_0.1-0.2 ES PID = 1.6 ppm BH117_1.0-1.1 ES PID = 1.8 ppm				I: Silty SAND; fine to medium grained, brown, with brick igments and sub-angular to angular gravels, with rootlets, no iour.	D	-	FILL		
			1.5 — - - 2.0—	2.00	BH117_1.9-2.0 ES PID = 0.4 ppm			CI- CH	AY; medium to high plasticity, grey mottled red, no odour. ple Terminated at 2.00 m rget depth reached.	м		NATURAL		
			- - 2.5 — - -	-										
			-											

		6	R										TEST: BH118M
	e	ia		str		Position	Pym Refe	ble Go r to Fig	lf Clu jure 2		44		Sheet 1 OF 1 Date Started 8/1/19 Date Completed 8/1/19
						Job No. Client		975.E0 ble Go		-		g	Logged SL Date:
										Inclination -90°			Checked Date:
┝	7	.	Dril	ling		Sampling			2	Field Material Desc	-		PIEZOMETER DETAILS
COLLEN	PENETRATIO	RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	D <u>Static Water Level</u> BH118M ⊗ ∞ ₩
				0	0.50	BH118M_0.2-0.3 ES PID = 1.6 ppm			- CL-	Fill: Silty SAND; fine to medium grained, brown, with brick fragments and sub-angular to angular gravels, with rootlets, no odour.	D		
				- 1		BH118_0.9-1.0 ES PID = 1.7 ppm			CI	CLAY; low to medium plasticity, red, no odour.	м		
				2	1.50				-	SHALE; weathered rock, red, no odour.		_	Content of the second s
				-									
				3									
E.C.V		-	GWNE	- - 4								-	→ → → → → → → → → → → → → → → → → → →
0 2014-01-00 F1J. EIM 1:00 2				- - 5							D		50mm uPVC casin
				-									50mm uPVC screen
יווחטע המולפו המהמווע ייי				6 —	6.00				-	SHALE; slightly weathered, grey, no odour.			- Sand
21 7211 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- 7 —									
יופייאשוטירי טוטישטיאיי				- - 8	8.00					Hole Terminated at 8.00 m			
				-						Refusal on hard rock.			
				9—		This boreh	iole lo	ig shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d not	les.

e	eia	AU tion R	str	Geotechni	Project Location Position Job No. Client	Pyml Refe E239		If Clu gure 2 12	Contractor HartGeo Pty	' Ltd			Sheet Date Started Date Complete Logged SL Checked	1 OF 1 8/1/19	
		Dril	lling		Sampling				Field Material Des						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY		STRUCTUF ADDITIC OBSERVA	NAL	
AD/T AD/T		GWNE	0.0	0.50	BH113_0.2-0.3 ES PID = 1.4 ppm BH119_1.0-1.1 ES PID = 1.2 ppm				Fill: Sitty SAND; fine to medium grained, brown, with brick fragments and sub-angular to angular gravels, with rootlets, no odour. CLAY; low to medium plasticity, red, no odour. Hole Terminated at 1.20 m Target depth reached.	M		FILL	ΑL		
			2.0—		This bore	hole lo	g shoi	uld be	read in conjunction with EI Australia's accompanying sl	andaro	d note	es.			

		6	R								E	30	REHOLE: BH120
	e	ia		str	alia	Project Location				estigation b 4, 12-14 Cowan Road, St Ives			Sheet 1 OF 1
						Position		r to Fig					Date Started 8/1/19 Date Completed 8/1/19
						Job No. Client		975.E0 ble Go		Contractor HartGeo Pty I b Drill Rig Ute-mounted I)	Logged SL Date:
										Inclination -90°			Checked Date:
	_		Dril	ling		Sampling				Field Material Desc			
		RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENC ^V DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F				0.0] -	Fill: Silty SAND; fine to medium grained, brown, with brick fragments and sub-angular to angular gravels, with rootlets, no			FILL
				-		BH120_0.1-0.2 ES		\bigotimes	×	odour.			
				-		PID = 1.5 ppm		\bigotimes	>				
				-				\bigotimes					
				-				\bigotimes					
				0.5 —				\bigotimes					-
				_				\bigotimes	>				
								\bigotimes	>				
								\bigotimes	×		D		
				-				\bigotimes	×				
			ш	-		BH120_0.9-1.0 ES PID = 1 ppm		\bigotimes	×				
	À	-	GWNE	1.0 —				\bigotimes	×			-	-
				-				\bigotimes	×				
				-				\bigotimes	×				
				=				\bigotimes	×				
1.03 2014-07-05				-		BH120_1.4-1.5 ES		\bigotimes	×				
EIA 1.03 2				1.5 —	1.50	PID = 1.5 ppm		\bowtie	CL-	CLAY; low to medium plasticity, red, no odour.			NATURAL
77-05 Prj: I				-	-				CI				
.03 2014-(-	-								
LIb: EIA 1				-							M		
ol - DGD				-		BH120_1.9-2.0 ES							
d In Situ Tc				-2.0	2.00	PID = 1.2 ppm		<u> </u>					
pel Lab and				-		L				Hole Terminated at 2.00 m Target depth reached.			
0.000 Dat													
7:26 10.0				-									
/01/2019 *				-									
qFile>> 00				-	1								
< <drawing< td=""><td></td><td></td><td></td><td>2.5 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> -</td></drawing<>				2.5 —									-
=02.GPJ +				-									
E23975.E				-									
E HOLE 3				-									
S AU BOR				-									
SLB Log I				3.0 —									
EA LIB 1.03 GLB Log IS AU BOREHOLE 3 E23975.E02.GPJ < <drawingfile>> 09/01/2019.17.28 10.0000 DageILab and In Situ Tool - DGD Lib: EIA 1.03 2044-07-05 Prj: EIA</drawingfile>						This bore	hole lo	g shou	uld be	e read in conjunction with EI Australia's accompanying sta	ndaro	l note	es.
EIA													

e	eia		str	Geotechni	Project Location Position Job No. Client	Pyml Refe E239		lf Clu jure 2 2	estigation 9 4, 12-14 Cowan Road, St Ives Contractor HartGeo Pty Lt Drill Rig Ute-mounted Dr Inclination -90°	d		Sheet 1 OF 1 Date Started 8/1/19 Date Completed 8/1/19 Logged SL Date: Checked
		Dril	ling		Sampling				Field Material Descr	intio	n	
METHOD	PENETRATION RESISTANCE	<u> </u>	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL		-	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0	-	BH121_0.2-0.3 ES PID = 1.6 ppm			-	Fill: Silty SAND; fine to medium grained, brown, with brick fragments and sub-angular to angular gravels, with rootlets, no odour.			FILL
AD/T	-	GWNE	0.5	1.00	BH121_0.8-0.9 ES PID = 1.7 ppm					D	-	
			-1.0 	1.50	BH121_1.4-1.5 ES PID = 1.5 ppm			CL- CI	CLAY; low to medium plasticity, red, no odour.	Μ		NATURAL
			1.5	-					Hole Terminated at 1.50 m Target depth reached.			
			2.0—		This bore	hole lo	g shou	ld be	read in conjunction with EI Australia's accompanying stan	darc	d note	28.

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW Report No. E23975.E02_Rev0

APPENDIX D Field Data Sheets

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument:	Mini RAE 3000
Serial Number:	592-906667 - EI PID02 OR 592-901345 - EI PID03 🗆
Instrument Cor	nditions:90001

Calibration gas species: Isobutylene.

Calibration gas concentration: 100 ppm Gas bottle number: 846344/2

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

ppm at <u>by</u>ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: <u>720</u>psi (if reading is <250 psi, notify Equipment Manager to arrange new gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed: _	Shi
Date:	7/1./19.
Time:	AM.

Daily Inspection / Work Summary Card -Remediation & Validation Form OP 005a (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Date: 14/16 Time ON Site: 10:20 AM Travel Time: 16+16 Time OFF Site: 11:45 AM Site Address(Location: Pymble Golf, Club., 12-14 Cowan Rols St. Ives Cloudy / SUNNY Completed Works: > 011 2 wells one OVY > n0 GW SAMPLE collected. Comments / Issues / Conclusions / Further Testing Required / Actions to be Undertaken / Timing of Actions:
She Address I Location: Pymble Golf Club. 12-14 Cowan Rds St Ives Cloudy / SUNNY Completed Works:
Climatic Conditions: Cloudy / SUNNY Completed Works:
Completed Works: Cloudy / SUNY Completed Works: Cloudy / SUNY NO GIN Sample Oly NO GIN Sample collected. Comments / Issues / Conclusions / Further Testing Required / Actions to be Undertaken / Timing of Actions:
Completed Works:
Comments / Issues / Conclusions / Further Testing Required / Actions to be Undertaken / Timing of Actions:
Comments / Issues / Conclusions / Further Testing Required / Actions to be Undertaken / Timing of Actions:
Comments / Issues / Conclusions / Further Testing Required / Actions to be Undertaken / Timing of Actions:
Comments / Issues / Conclusions / Further Testing Required / Actions to be Undertaken / Timing of Actions:
Comments / Issues / Conclusions / Further Testing Required / Actions to be Undertaken / Timing of Actions:
Signed by
Signed by:

WATER SAMPLING FIELD SHEET

 $\phi = \kappa - \bar{\kappa} - \bar{\kappa}$

8

							i dao ci dila
Site Address:					Job Numb	ber: E2397	15
Client:					Date:	14-1-	19
Field Staff:	4	SL			Sampling	Location ID BH	(18 M
Well Location:					Round No););	0
MEDIUM	₫Groundwa	iter 🗆 S	Surface Wa	ater	□Stormw	ater Other:	
SAMPLING POINT INFO ²	9					197 m	
Well Installation Date:					Stickup (n	n): — O_l	(+ above ground - below ground
Initial Well Depth (mbgl):					A CONTRACTOR OF A CONTRACT	terval (mBTOC):	
Previous Sampling Date:					Previous	SWL (mBTOC):	
PID READINGS							
PID Headspace (ppm):					PID Back	ground (ppm):	
PID Breathing Space (ppm	1):						
PRE PURGE toc		hte					
Total Well Depth (mbgl):		8	0			d Condition:	
SWL (mbtoc):					Water Co	lumn (m):	
PHASE SEPARATED HYD	DROCARBO	NS (PSH)					
Depth to PSH (mbtoc):					PSH Visu	ally Confirmed (Bailer):	
PSH Thickness (mm):							
PURGE AND SAMPLE	Sector Constraints (1999)			- C			
Sampling Method	Bladde	er l	□Peristalti	c 🗆	Submersit		
Depth of Pump Inlet:	<i>(</i> .)				Fill Timer		
Pump Pressure Regulator	(psi):				Discharge	e limer:	
Weather Conditions:					Cycle:		
Pump on time:	IETERO				Pump off	time:	
WATER QUALITY PARAM	NETERS				Bume To	et Data and Times	
Probe Make and Model:	Tarra	EC	Dedau	DO	-	st Date and Time:	
Time Volume SWI (L) (mbto		EC (µS/cm)	Redox (mV)	(mg/L)	pH (units)	Comments (colour	, turbidity, odour etc.)
						-	
Stabilisation range:	.0.090	1361	100-11	+400/	40.0		
3 consecutive readings	±0.2°C	±3%	±20mV	±10%	±0.2		
OTHER COMMENTS/OB	SERVATION	S:	dy	' W	ell.		
SIGNATURE:		GN	m)

1.1

1		WATER	SAMPLI	NG FIELD	SHEET			eiaustralia
Site Addr	ess:	VV	mble	Golf	Club		Job Numl	ber: E23975
Client:		11				6.	Date:	14-1-19
Field Staf	f:		4	il			Sampling	Location ID BHIOLM
Well Loca	ition:			/			Round No):
MEDIUM)¤í	Groundwa	ter 🗆 S	urface Wa	ater	Stormw	ater DOther:
SAMPLIN	IG POINT	INFO						
Well Insta	allation Dat	ie:					Stickup (r	n): $\mathcal{O}, \mathcal{O}^+$ (+ above ground - below ground
nitial We	II Depth (m	nbgl):					Screen In	terval (mBTOC):
Previous	Sampling	Date:					Previous	SWL (mBTOC):
PID REAL	DINGS							
PID Head	space (pp	m):					PID Back	ground (ppm):
PID Breat	hing Spac	e (ppm):		4				
PRE PUR	GE			0				1
Total Wel	l Depth (m	ibgl):		2,951	n		Well Hea	d Condition: 9000
SWL (mb	toc):						Water Co	lumn (m):
		D HYDRO	CARBON	IS (PSH)				
Depth to	PSH (mbto	oc):			X		PSH Visu	ally Confirmed (Bailer):
	kness (mr							
PURGE A	ND SAME	PLE						
Sampling	Method		Bladde	er D	Peristalti	c E	Submersil	ble DOther:
	Pump Inle	::					Fill Timer	A Constant and A Cons
		gulator (psi	i):				Discharge	e Timer:
	Conditions						Cycle:	
Pump on							Pump off	time:
	and set of the set of	PARAMET	ERS					
Probe Ma	ke and Mo	del:					Bump Te	st Date and Time:
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour etc.)
1								
-								
-	1	-				<		
2	1.2				S			
	6						-	
61 (ġ.		
Stab	ilisation ra	nde.						
	ecutive re		±0.2°C	±3%	±20mV	±10%	±0.2	
USE-COSE Base	Statistic Health to whether	S/OBSER	VATION					
JIHERU	OMMENT	dy	We	1	/			
				101	1			
SIGNATU	IRE:	1.1.1	7.	SY	NI	-		
SIGNATU	JRE:	e.	1	5/1	N	7		

- or M

	1	
4-		

1 1 F

WATER	SAMPLING	FIELD SHEET	
-------	----------	-------------	--

Site Addı Client:	ess:						Job Number Date:	14-1-19
Field Sta	ff.		SL				Sampling Lo	
Well Loc	2 CON C		DL				Round No:	
MEDIUM		M	Groundwa	ter DS	urface Wa	ater	□Stormwate	er DOther:
	NG POINT		Jiounawa					
1150 Priling 17	allation Dat						Stickup (m):	: -0,0% (+ above ground - below ground
2010/02/2010/02/2010/02/2010	ell Depth (m	Network.						rval (mBTOC):
	Sampling							VL (mBTOC):
PID REA		5410.					r tottodo of	
	dspace (pp	m):					PID Backord	ound (ppm):
	thing Space						i is saongri	
PRE PUI	and the second se	toc						,
	ell Depth (m			647	1		Well Head O	Condition: 9000
SWL (mt		71	6.	37			Water Colur	
	SEPARATE	D HYDRO						
	PSH (mbto						PSH Visuall	y Confirmed (Bailer):
	ckness (mn							5
and the second	AND SAME							
	g Method		□Bladde	r [] Peristalti	c 🗆	Submersible	e, € □Other:
	Pump Inlet					1994 - 1995. 1994 - 1995	Fill Timer:	N.
	essure Reg):				Discharge T	Timer:
	Conditions						Cycle:	22100-7608
Pump on	time:						Pump off tin	ne:
	QUALITY I	PARAMET	ERS					
Probe Ma	ake and Mo	odel:				с. С	Bump Test	Date and Time:
Time	Volume	SWL	Temp	EC	Redox	DO	pH	Comments (colour, turbidity, odour etc.)
i inte	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	comments (colour, turbialty, odour etc.)
Ŧ.								
3								
1.1								
8								
			9					
	oilisation ra	CARSITALITY OF	+0.2%	+20/	+20m1/	+10%	+0.2	
	oilisation ra	CARSITALITY OF	±0.2°C	±3%	±20mV	±10%	±0.2	
3 con		adings			±20mV	±10%	±0.2	

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW Report No. E23975.E02_Rev0

APPENDIX E

Chain of Custody and Sample Receipt Forms

Sheet of	f_4_	_	511	115	2 1	.55	Gam	ple N	Aatrix								Ana	alysis	5					Comments
site: Pymble 12-14 Colum	Golf Road,	Club St	Lve.	s.	Pro	23975			it. etc.)	AHS	AHs					tion	change)	onductivity)						HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	SGS Unit Il Alexon	Austra , 33 White	alia Mad NSU	- U.X V 201	St 5	2			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ [∆] /ТКН/ВТЕХ/РАНS	HM A /TRH/BTEX)S	os Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S	2		a	Mercury Nickel Zinc HM ^B Arsenic
Sample ID	Laboratory ID		tainer /pe	Da	Sampli te	ng Time	WATER	SOIL	OTHERS	HM A /	HM ∆ /T	HMAN	BTEX	VOCs	Asbestos	Asbestos	pH / CE	pH/EC	Dewate	sPOCAS	PFAS			Cadmium Chromium Lead Mercury Nickel
BH101 M_05-01		J.2	LB	7/1/	2019	.AM		\times			/	_												Dewatering Suite
BH 102 _ 0.2-0.3	2	1			-					\checkmark														TDS / TDU Hardness
1 -0.9-1.0	3										1													Total Cyanide Metals (Al. As, Co Cu, Pb, Hg, Ni, Z
BH103_01-0.2	4									/														TRH (F1, F2, F3, BTEX
1 _ 0.6-0.7	5										~								Alexandria Laboratory					PAH Total Phenol
BH104-0.2-0.3	6									/							SGS	EHS	Alexa	ndria	Labora	itory		LABORATO TURNAROU
1 -1.2-1.3	-											/												Standar
BH105-0.5-0.6	7					X					2					_	SF	187	'93(24 Hour
BH/06_0.2-0.3	8					CM				1						_			09					48 Hour
1 - 0.7-0.3																							1	72 Hour
BH107-0.5-0.6	9										~					_								Other_
BH 108_ 0.1-0.2	10	1	1	J		l		V		\checkmark														
J= solvent washed, aci S= solvent washed, ac		1		s jar				Inves	tigato	r: I atte with	St. 32		Sec. 1. 1. 1			ollecte		ccorda	ince	R	eport wi	th El Was	te Classific	ation Table
P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag								Sampl Prin		ime (EI)	: SZ			Print	t	(Eurofi	ns):		-	Sam	oler's C	omments	ii 11 result	s to
020				PYRM	ONT N	Miller Str NSW 200		Sign Date	ature		m		9	Signe Date	1	~	21	e 5					voelder	s -6 O eigust
eiaus	trali	а	k			i 0722 ilia.com.a	au	IMP	ORT	ANT		201		9/1	19		2.	55	_	CD,	m, a	U		
(*************************************	and the second second second	5. s		-	2015 FORM					nail lab		y resu	Its to:	lab@	Deiau	ustral	lia.co	om.au	1					

_	iheet of		-				San	nple N	Aatrix								Ana	lysis						Comments	
s	ite: Pymble & 12-14 Cowar	isolf n Rdz	Club St I	Lve s	-	vject No:			ıt, etc.)	AHs stos	AHs					tion	change)	onductivity)						HM A Arsenic Cadmium Chromium Copper Lead	
L	aboratory:	ALEXAN	stralia 33 Maddox NDRIA NSV 94 0400 F:	V 2015	0499				OTHERS (i.e. Fibro. Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite				CLP HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic	
	Sample ID	Laboratory ID	Container Type	S Date	Samplin	ng Time	WATER	SOIL	OTHERS	HM A /	HM A /T	HM A /T	BTEX	VOCs	Asbestos	Asbesto	bH / CE	pH/EC	Dewater	sPOCAS	PFAS		TCLP H	Cadmium Chromium Lead Mercury	
P	64108-0.8-0.9		J, ZUB	7/1/2	2019	PM					,													 Nickel Dewatering Suite 	
Ę	34109-0.2-0.3	11	1		1	1				/														pH & EC TDS / TDU Hardness	
	V - 0.7-0.8																							Total Cyanide Metals (AI, As, Cd, Cr, Cu, P5, Hg, Ni, Zn)	
B	4110 _ 0.2-0.3	12								/												TRH (F1. BTEX			
L	1 0.9-1.0																							PAH Total Phenol	
B	4/11_0.5-0.6	13									/												LABORATORY TURNAROUND		
ß	4/12-0.1-92	14								~														Standard	
	1 -0.7-0.8			V	_	Ý					•	_						_						24 Hours	
13)	1113_0.5-0.6	15		8/1/	2019	AM					~												_	48 Hours	
B	4114_0.1-0,2			1	_				_	/													_	72 Hours	
B	H115M_0.2-93	17								/														Other	
	-0.8-0.9		V	V		\checkmark																			
J= S:	solvent washed, acid	d, acid rinsed,Teflon sealed, glass jar d, acid rinsed glass bottle plastic bottle Report with El Waste Classification with standard El field sampling procedures.						on Table																	
V	= glass vial, Teflon Septum 3 = Zip-Lock Bag				Sampler's Name (EI): Received by (SGS): Sampler's Comments: Print S/L Print S/L																				
	eiaustralia Suite 6.01, 55 Miller Stre PYRMONT NSW 2005 Ph: 9516 0722 Iab@eiaustralia.com.al				Street, signature Sec Ist Pag								7 C .												
	eldusi	Idll	d	lab@eiau			au	IMP		ANT. ail lab	:					untral	io oo			1					

Sheet of	4	-			Sar	nple I	Aatrix								Ana	lysis								Comments
site: Pymble (Golf	aub		Project No): 											ity)								HM A Arsenic
site: Primble (12-14 Cowan	Rd,	St Ive	25	E23975	-		nl, etc.)	AHs	AHs					tion	change)	onductiv								Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox 3 NDRIA NSW 94 0400 F: 0	2015	199			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM A /TRH/BTEX/PAHs	HM Å /TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ring Suite	0					HM E / PAH	Mercury Nickel Zinc HM ^B Arsenic
1 TO TO CONTRACT.	Laboratory		Sa	mpling	WATER		IERS	PIOF	¶≜/T	1/A/T	BTEX	VOCs	Asbestos	besto	/ CE	/ EC	Dewatering	spocas	PFAS				A	Cadmium Chromium
ID	ID	Туре	Date	Time		SOIL	01	ΞŎ	Ĩ	H	81	2	As	As	Hđ	Hd	De	d's	Ц				TCL	Lead Mercury Nickel
BH116_ 0.2-0.3	18	JZUB	8/1/2	ag PM		X		\checkmark																Dewatering Suite pH & EC
- 0.8-0.9	19	١	1	1		1		\checkmark																TDS / TDU Hardness
1.4-1.5																								Total Cyanide Metals (Al. As. Cd, Cr.
BH117_0.1-0.2	20							/																Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
1.0-1.1	2-1.1 21							\checkmark																PAH Total Phenol
- 1.9-2.0	22					\square			/	/													1	LABORATORY TURNAROUND
BH/18 M-0.2-0.3	23							1																Standard
V _ 0.9-1.0					1	1																1		24 Hours
BH119 _ 0.2-0.3	24				1			1		_														48 Hours
V~ 1.0-1.1	25				1				\checkmark									_						72 Hours
81/120 -0.1-0.2	26				1			1	-													-		Other
V _ 0.9-1.0		U			1	U					_						_					-		
Container Type: J= solvent washed, acid S= solvent washed, acid					1	Inves	stigato	r: I atte with :				ples w sampli				ccorda	ance	R	leport	with El	Waste	Classifi	cation	n Table
VC= glass vial, Tefion S ZLB = Zip-Lock Bag						Samp Pril	222.22	me (El)				Recei Prin	ved by	(SGS):				Sam	pler's	Comm	ents:			
Suite 6.01, 55 Miller Stre PYRMONT NSW 2009				signature SC Nesse Signature Signature						5	Spe		Ist	1	Pay	9e.								
eiaust	eiaustralia Ph: 9516 0722			.au	19/119 7-55								_											
COC March 2018 FORM v 4 - SGS							nail lab		ry resu	ults to:	lab@	2)eiau	ustra	lia.co	m.au	L								

Sheet of	_4	4			San	nple N	latrix								Ana	lysis							Comments
site: Pymble 12-14 Cowan	Golf Rol,	club, St	Ives	Project No: E>3975	1		int, etc.)	PAHs estos	AHs					ation	(change)	pH / EC (electrical conductivity)							HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	istralia 33 Maddox NDRIA NSW 94 0400 F: (2015	99			i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	НМ Å /ТКН/ВТЕХ			10	Asbestos Quantification	pH / CEC (cation exchange)	(electrical o	ng Suite					AB / PAH	Mercury Nickel Zinc HM B Arsenic
Sample ID	Laboratory	Container Type	Sa	mpling	WATER	ų.	OTHERS (i.e.	MA /T CP/OP	M ≜ /TI	M A /TI	BTEX	vocs	Asbestos	sbesto	1 / CEC	H/EC	Dewatering	sPOCAS	PFAS			CLP HM	Cadmium Chromium Lead
177.			Date	Time	M	SOIL	OT	ĪŎ	I	Ĩ	6	×	¥	As	4d	Ę	ŏ	å	Ч		_	10	Mercury Nickel
<u>BH120 - 1.4-1.5</u> V _ 1.9-2.0	27	J,ZIB	8/1/2	29 PM		×	-	~														-	Dewatering Suite pH & EC TDS / TDU
BH12 - 02-0.3	28							~															Hardness Total Cyanide Metals (Al, As. Cd, Cr
_ 0.8-0.9	29								_			-											Cu. Pb. Hg, Ni. Zn) TRH (F1, F2, F3, F4) BTEX PAH
V 1.4-1.5		V							~	-						_							Total Phenol
QD1 Bulloo ORI	30	S.P.VC	7/1/19		~	V	-	-	_	/							_					TURNAROUND	
<u>BH100-QR1</u> BH100-QRB		S,P,VC	73/1/	<u>19</u>	××		-	_		·						-	_						Standard
3410_QTSI	32	Vi	lob D	homed		×					1												24 Hours
31/100_QTB	33	ŀ	ur r	Tepored		\times					~												72 Hours
							_	_	_					_		_			_				Other
S= solvent washed, aci	ntainer Type: olvent washed, acid rinsed, Teflon sealed, glass jar solvent washed, acid rinsed glass bottle natural HDPE plastic bottle					Invest	igator				se samples were collected in accordance I field sampling procedures,					nce	R	eport w	ith El Wa	aste Clas	sificatio	n Table	
= natural HDHE plastic bottle C= glass vial, Teflon Septum .B = Zip-Lock Bag					Sample Print	910000	me (EI):				Receiv	ed by	(SGS):				Sam	oler's C	ommen	ts:	7		
0:0	Suite 6.01, 55 Miller Stree PYRMONT NSW 2009			100 C	et, Stature Shi Ster Ist							Po	ge.										
eiaust	ralia	a		516 0722 stralia.com.a	au	IMPO		9/ ANT.	_	201	7	91	110	1	2:.	22	-	-					
Carden and			COC March 2018	FORM v.4 - SGS		Pleas	e e-m	ail labo	orator	y resu	Its to:	lab@)eiau	Istral	ia.co	m.au							

CLIENT DETAILS	S	LABORATORY DETA	ILS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	emmanuel.woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23975 Pymble Golf Club St Ives E23975 33	Samples Received Report Due SGS Reference	Wed 9/1/2019 Wed 16/1/2019 SE187930

_ SUBMISSION DETAILS

This is to confirm that 33 samples were received on Wednesday 9/1/2019. Results are expected to be ready by COB Wednesday 16/1/2019. Please quote SGS reference SE187930 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 9/1/2019 Yes 8.9°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 32 Soil 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

12 Soil and 1 Water samples have been placed on hold as no tests have been assigned for them by the client . These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS _

Client EI AUSTRALIA

Project E23975 Pymble Golf Club St Ives

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH101M_0.5-0.6	-	-	26	-	7	10	12	8
002	BH102_0.2-0.3	29	14	26	11	7	10	12	8
003	BH102_0.9-1.0	-	-	26	-	7	10	12	8
004	BH103_0.1-0.2	29	14	26	11	7	10	12	8
005	BH103_0.6-0.7	-	-	26	-	7	10	12	8
006	BH104_0.2-0.3	29	14	26	11	7	10	12	8
007	BH105_0.5-0.6	-	-	26	-	7	10	12	8
008	BH106_0.2-0.3	29	14	26	11	7	10	12	8
009	BH107_0.5-0.6	-	-	26	-	7	10	12	8
)10	BH108_0.1-0.2	29	14	26	11	7	10	12	8
011	BH109_0.2-0.3	29	14	26	11	7	10	12	8
)12	BH110_0.2-0.3	29	14	26	11	7	10	12	8
013	BH111_0.5-0.6	-	-	26	-	7	10	12	8
)14	BH112_0.1-0.2	29	14	26	11	7	10	12	8
015	BH113_0.5-0.6	-	-	26	-	7	10	12	8
016	BH114_0.1-0.2	29	14	26	11	7	10	12	8
017	BH115_0.2-0.3	29	14	26	11	7	10	12	8
018	BH116_0.2-0.3	29	14	26	11	7	10	12	8
019	BH116_0.8-0.9	29	14	26	11	7	10	12	8
020	BH117_0.1-0.2	29	14	26	11	7	10	12	8
021	BH117_1.0-1.1	29	14	26	11	7	10	12	8
022	BH117_1.9-2.0	-	-	26	-	7	10	12	8
)23	BH118M_0.2-0.3	29	14	26	11	7	10	12	8
024	BH119_0.2-0.3	29	14	26	11	7	10	12	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23975 Pymble Golf Club St Ives

SUMMARY	OF ANALYSIS		1	1	1			1	
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	BH119_1.0-1.1	-	-	26	-	7	10	12	8
026	BH120_0.1-0.2	29	14	26	11	7	10	12	8
027	BH120_1.4-1.5	29	14	26	11	7	10	12	8
028	BH121_0.2-0.3	29	14	26	11	7	10	12	8
029	BH121_1.4-1.5	-	-	26	-	7	10	12	8
030	QD1	-	-	-	-	7	10	12	8
032	BH100_QTS1	-	-	-	-	-	-	12	-
033	BH100_QTB1	-	-	-	-	-	-	12	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH101M_0.5-0.6	-	1	1
002	BH102_0.2-0.3	2	1	1
003	BH102_0.9-1.0	-	1	1
004	BH103_0.1-0.2	2	1	1
005	BH103_0.6-0.7	-	1	1
006	BH104_0.2-0.3	2	1	1
007	BH105_0.5-0.6	-	1	1
008	BH106_0.2-0.3	2	1	1
009	BH107_0.5-0.6	-	1	1
010	BH108_0.1-0.2	2	1	1
011	BH109_0.2-0.3	2	1	1
012	BH110_0.2-0.3	2	1	1
013	BH111_0.5-0.6	-	1	1
014	BH112_0.1-0.2	2	1	1
015	BH113_0.5-0.6	-	1	1
016	BH114_0.1-0.2	2	1	1
017	BH115_0.2-0.3	2	1	1
018	BH116_0.2-0.3	2	1	1
019	BH116_0.8-0.9	2	1	1
020	BH117_0.1-0.2	2	1	1
021	BH117_1.0-1.1	2	1	1
022	BH117_1.9-2.0	-	1	1
023	BH118M_0.2-0.3	2	1	1
024	BH119_0.2-0.3	2	1	1

Project E23975 Pymble Golf Club St Ives

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23975 Pymble Golf Club St Ives

SUMMAR	Y OF ANALYSIS					
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
025	BH119_1.0-1.1	-	1	1	-	-
026	BH120_0.1-0.2	2	1	1	-	-
027	BH120_1.4-1.5	2	1	1	-	-
028	BH121_0.2-0.3	2	1	1	-	-
029	BH121_1.4-1.5	-	1	1	-	-
030	QD1	-	1	1	-	-
031	BH100_QR1	-	-	-	12	8
033	BH100_QTB1	-	-	1	-	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	
031	BH100_QR1	1	7	10	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

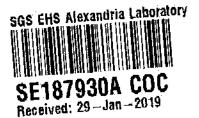
Project E23975 Pymble Golf Club St Ives

Yin, Emily (Sydney)

From:	Crawford, Huong (Sydney)
Sent:	Wednesday, 30 January 2019 3:23 PM
To:	'Emmanuel Woelders - ElAustralia'; AU.SampleReceipt.Sydney (Sydney)
Cc:	Harley, Paul (Sydney); Sharon Li - ElAustralia; Nathan Foster - ElAustralia
Subject:	RE: Report Job SE187930, your reference E23975 Pymble Golf Club St Ives, order
	number E23975

Hi Emmanuel,

As discussed, we are sending the two samples to Melbourne today for methyl mercury analysis.


Cost= \$280/sample.

TAT= please expect 4-5 days.

Any issues please let me know, thanks.

Kind Regards,

Huong Crawford Environment, Health & Safety Production Manager SGS Australia Pty Ltd Unit 16, 33 Maddox Street Alexandria NSW 2015 Phone: +61 (0)2 8594 0403 Fax: +61 (0)2 8594 0409 E-mail: Huong.Crawford@sgs.com Web: www.att.sgs.com View Your Results Online: engage.sgs.com

-----Original Message-----From: Emmanuel Woelders - ElAustralia [mailto:emmanuel.woelders@eiaustralia.com.au] Sent: Tuesday, 29 January 2019 9:40 AM To: AU.SampleReceipt.Sydney (Sydney) <AU.SampleReceipt.Sydney@sgs.com> Cc: Crawford, Huong (Sydney) <Huong.Crawford@sgs.com>; Harley, Paul (Sydney) <Paul.Harley@sgs.com>; Sharon Li - ElAustralia <sharon.li@eiaustralia.com.au>; Nathan Foster - ElAustralia <nathan.foster@eiaustralia.com.au> Subject: FW: Report Job SE187930, your reference E23975 Pymble Golf Club St Ives, order number E23975

Hi **H**uong,

Can you please test for methyl mercury on sample BH119_0.2-0.3 and sample BH121_0.2-0.3 on a ASAP tat. Please

N

Kind regards,

confirm an ETA.

Emmanuel Woelders | Environmental Scientist - Project Manager

T; 02 9516 0722 T: 0499 594 989

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	NLS	_
Contact	Emmanuel Woelders	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	emmanuel.woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23975 Pymble Golf Club St lves-Add	Samples Received	Tue 29/1/2019	
Order Number	E23975	Report Due	Wed 6/2/2019	
Samples	33	SGS Reference	SE187930A	

_ SUBMISSION DETAILS

This is to confirm that 33 samples were received on Tuesday 29/1/2019. Results are expected to be ready by COB Wednesday 6/2/2019. Please quote SGS reference SE187930A when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 29/1/19@9:40am Yes 8.9°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 2 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Analysis subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

) www.sgs.com.au

CLIENT DETAILS .

SAMPLE RECEIPT ADVICE

Client EI AUSTRALIA SUMMARY OF ANALYSIS No. Sample ID 024 BH119_0.2-0.3

CONTINUED OVERLEAF

SAMPLE RECEIPT ADVICE

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet of		-				iple M	latrix		_	•					Ana	lysis								Comments
site: Rymble 12-14 Cour	Golt	aub		Project No:												vity)								HMA Arsonic Cadmium
12-14 Com	in Rol	, St	Ires	E23975			vl, elc.)	AHs	AHs					lion	change	onductív								Chromium Copper Lead
Laboratory:	12 Ashi CHATS	ab Service ey Street, WOOD NS 910 6200					OTHERS (1.e. Flbro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	лтинатех			sa sa	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S					HM ^B / PAH	Mercury Nickel Zînc HM <u>B</u> Arsenic
Sample ID	Laboratory ID	Container Type	Sa Date	ampilng Time	WATER	SOIL	OTHERS	HMA / OCP/OI	ИМАЛ	<i>⊔</i> Амн	BTEX	VOCs	Asbestos	Asbesto	pH / CE	pH / EC	Dewate	sPOCAS	PFAS				TCLP H	Cadmbun Chromium Lead Mercury
QTI	\bigcirc	J	7/1/2	al		X				$\mathbf{\Sigma}$												_		Nickel Dewatering Suite
										-						ម		9	Envin: stswoo	12 Ast	ev Sz			pH & EC TDS / TOU Hardness Total Cyanide
																<u>.</u>	b No		Ph: (C	2) 9310	6200 1 / C	9		Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
									-							Da Tr	te Rea	eived:			019			BTEX PAH Total Phenol
									-							Re	ne Re ceiver	By:		16	.42			LABORATORY TURNAROUND
·																	oling:				Pi			1 Standard
																							_	24 Hours
			·	-			·			·			_					·		· ·				- [-] 48 Hours
																_								72 Hours
										_														Other
Container Type:			-						_					_		_							-	
J= solvent washed, aci S= solvent washed, aci	id rinsed glas		ss jar			Inves	tigato	r: atte with				iples v sampli				ccord	ance	8	leport v	with El	l Wast	e Clas	sificatio	on Table
P= natural HDPE plast VC= glass vial, Teflon 3 ZLB = Zip-Lock Bag								ımə (El)	:				ived by	<u> </u>				Sam	pler's	Comn	nents:			1
ZEB - ZIP-LOCK Bag						Prin	I.C.		SU	~		Prin	^u	Ra	1		_	Ple	Фe	€ŀ	ng.'/	rem	rs -	70
		S	-	55 Miller St		Sign	ature		5h	<i>n</i>		Sign	aturə	R	•			em	ncin	nel.	woe	blers	0	
	trali-	2		NT NSW 200 9516 0722	19	Date		9/	1/8	ю19		Date	· 9.	1.21	019			Q	tau	stial	<i>ia</i> , a	oM,	au	1 0 -
		3	-	istralia.com.	au			FANT		ŕ		1.1.4						Ŭ						
			COC March 20	IS FORM W.4 - SGS		Plea	se e-n	nali lab	orato	ry resi	ults to:	: Iab((geia	ustra	lia.co	om.a	u							

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

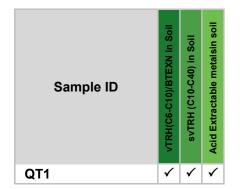
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email, Emmanuel Woelders

Sample Login Details	
Your reference	E23975, St Ives
Envirolab Reference	209189
Date Sample Received	09/01/2019
Date Instructions Received	09/01/2019
Date Results Expected to be Reported	16/01/2019

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW Report No. E23975.E02_Rev0

APPENDIX F Laboratory Analytical Reports

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	emmanuel.woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23975 Pymble Golf Club St Ives	SGS Reference	SE187930 R0
Order Number	E23975	Date Received	9/1/2019
Samples	33	Date Reported	16/1/2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

kinty (

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

Teresa Nguyen Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

VOC's in Soil [AN433] Tested: 11/1/2019

			BH101M_0.5-0.6	BH102_0.2-0.3	BH102_0.9-1.0	BH103_0.1-0.2	BH103_0.6-0.7
			0.011	001	001		001
			SOIL	SOIL	SOIL	SOIL	SOIL
			7/1/2019	7/1/2019	7/1/2019	7/1/2019	7/1/2019
PARAMETER	UOM	LOR	SE187930.001	SE187930.002	SE187930.003	SE187930.004	SE187930.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH104_0.2-0.3	BH105_0.5-0.6	BH106_0.2-0.3	BH107_0.5-0.6	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				7/1/2019	7/1/2019		7/1/2019
PARAMETER	UOM	LOR	SE187930.006	SE187930.007	SE187930.008	SE187930.009	SE187930.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH109_0.2-0.3	BH110_0.2-0.3	BH111_0.5-0.6	BH112_0.1-0.2	BH113_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
					-	-	-
							8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.013	SE187930.014	SE187930.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH114_0.1-0.2	BH115_0.2-0.3	BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	8/1/2019 SE187930.016	8/1/2019 SE187930.017	8/1/2019 SE187930.018	8/1/2019 SE187930.019	8/1/2019 SE187930.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

VOC's in Soil [AN433] Tested: 11/1/2019 (continued)

			BH117_1.0-1.1	BH117_1.9-2.0	BH118M_0.2-0.3	BH119_0.2-0.3	BH119_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.021	SE187930.022	SE187930.023	SE187930.024	SE187930.025
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3	BH121_1.4-1.5	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	7/1/2019
PARAMETER	UOM	LOR	SE187930.026	SE187930.027	SE187930.028	SE187930.029	SE187930.030
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH100_QTS1	BH100_QTB1
PARAMETER	UOM	LOR	SOIL - 8/1/2019 SE187930.032	SOIL - 8/1/2019 SE187930.033
Benzene	mg/kg	0.1	[97%]	<0.1
Toluene	mg/kg	0.1	[95%]	<0.1
Ethylbenzene	mg/kg	0.1	[107%]	<0.1
m/p-xylene	mg/kg	0.2	[108%]	<0.2
o-xylene	mg/kg	0.1	[109%]	<0.1
Total Xylenes	mg/kg	0.3	-	<0.3
Total BTEX	mg/kg	0.6	-	<0.6
Naphthalene	mg/kg	0.1	-	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 11/1/2019

			BH101M_0.5-0.6	BH102_0.2-0.3	BH102_0.9-1.0	BH103_0.1-0.2	BH103_0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE187930.001	SE187930.002	SE187930.003	SE187930.004	SE187930.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH104_0.2-0.3	BH105_0.5-0.6	BH106_0.2-0.3	BH107_0.5-0.6	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE187930.006	SE187930.007	SE187930.008	SE187930.009	SE187930.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH109_0.2-0.3	BH110_0.2-0.3	BH111_0.5-0.6	BH112_0.1-0.2	BH113_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.013	SE187930.014	SE187930.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH114_0.1-0.2	BH115_0.2-0.3	BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.016	SE187930.017	SE187930.018	SE187930.019	SE187930.020
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH117_1.0-1.1	BH117_1.9-2.0	BH118M_0.2-0.3	BH119_0.2-0.3	BH119_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.021	SE187930.022	SE187930.023	SE187930.024	SE187930.025
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3	BH121_1.4-1.5	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	7/1/2019
PARAMETER	UOM	LOR	SE187930.026	SE187930.027	SE187930.028	SE187930.029	SE187930.030
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 11/1/2019

			BH101M_0.5-0.6	BH102_0.2-0.3	BH102_0.9-1.0	BH103_0.1-0.2	BH103_0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE187930.001	SE187930.002	SE187930.003	SE187930.004	SE187930.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH104_0.2-0.3	BH105_0.5-0.6	BH106_0.2-0.3	BH107_0.5-0.6	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE187930.006	SE187930.007	SE187930.008	SE187930.009	SE187930.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	51	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH109_0.2-0.3	BH110_0.2-0.3	BH111_0.5-0.6	BH112_0.1-0.2	BH113_0.5-0.6
	UOM	LOR	SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 8/1/2019
PARAMETER TRH C10-C14	mg/kg	20	SE187930.011 <20	SE187930.012 <20	SE187930.013 <20	SE187930.014 <20	SE187930.015 <20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 11/1/2019 (continued)

			BH114_0.1-0.2	BH115_0.2-0.3	BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.016	SE187930.017	SE187930.018	SE187930.019	SE187930.020
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH117_1.0-1.1	BH117_1.9-2.0	BH118M_0.2-0.3	BH119_0.2-0.3	BH119_1.0-1.1
			SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019
PARAMETER	UOM	LOR	SE187930.021	SE187930.022	SE187930.023	SE187930.024	SE187930.025
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3	BH121_1.4-1.5	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/1/2019	- 8/1/2019	- 8/1/2019	- 8/1/2019	- 7/1/2019
PARAMETER	UOM	LOR	SE187930.026	SE187930.027	SE187930.028	SE187930.029	SE187930.030
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 11/1/2019

			BH101M_0.5-0.6	BH102_0.2-0.3	BH102_0.9-1.0	BH103_0.1-0.2	BH103_0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE187930.001	SE187930.002	SE187930.003	SE187930.004	SE187930.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	0.5
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.3</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.4</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.4</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.4
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	2.6
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	2.6

			BH104_0.2-0.3	BH105_0.5-0.6	BH106_0.2-0.3	BH107_0.5-0.6	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
				- 5012	- SUIL		- 5012
PARAMETER	UOM	LOR	SE187930.006	SE187930.007	SE187930.008	SE187930.009	SE187930.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 11/1/2019 (continued)

			BH109_0.2-0.3	BH110_0.2-0.3	BH111_0.5-0.6	BH112_0.1-0.2	BH113_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
							8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.013	SE187930.014	SE187930.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	0.3	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	1.6	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	1.6	<0.8

			BH114_0.1-0.2	BH115_0.2-0.3	BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
					-	-	-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.016	SE187930.017	SE187930.018	SE187930.019	SE187930.020
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 11/1/2019 (continued)

			BH117_1.0-1.1	BH117_1.9-2.0	BH118M_0.2-0.3	BH119_0.2-0.3	BH119_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.021	SE187930.022	SE187930.023	SE187930.024	SE187930.025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3	BH121_1.4-1.5
				00"		0.01
			SOIL	SOIL	SOIL	SOIL
			8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.026	SE187930.027	SE187930.028	SE187930.029
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 11/1/2019

			BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.2-0.3	BH106_0.2-0.3	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/1/2019
PARAMETER	UOM	LOR	SE187930.002	SE187930.004	SE187930.006	SE187930.008	SE187930.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 11/1/2019 (continued)

			BH109_0.2-0.3	BH110_0.2-0.3	BH112_0.1-0.2	BH114_0.1-0.2	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	7/1/2019 SE187930.011	7/1/2019 SE187930.012	7/1/2019 SE187930.014	8/1/2019 SE187930.016	8/1/2019 SE187930.017
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 11/1/2019 (continued)

			BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2	BH117_1.0-1.1	BH118M_0.2-0.3
			SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019
PARAMETER	UOM	LOR	SE187930.018	SE187930.019	SE187930.020	SE187930.021	SE187930.023
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 11/1/2019 (continued)

			BH119_0.2-0.3	BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			- 8/1/2019	- 8/1/2019	- 8/1/2019	- 8/1/2019
PARAMETER	UOM	LOR	SE187930.024	SE187930.026	SE187930.027	SE187930.028
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	0.4
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	0.3
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 11/1/2019

			BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.2-0.3	BH106_0.2-0.3	BH108_0.1-0.2
			SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019
PARAMETER	UOM	LOR	SE187930.002	SE187930.004	SE187930.006	SE187930.008	SE187930.010
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH109_0.2-0.3	BH110_0.2-0.3	BH112_0.1-0.2	BH114_0.1-0.2	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
	UOM	LOR	7/1/2019	7/1/2019	7/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.014	SE187930.016	SE187930.017
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2	BH117_1.0-1.1	BH118M_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 8/1/2019 SE187930.018	SOIL - 8/1/2019 SE187930.019	SOIL - 8/1/2019 SE187930.020	SOIL - 8/1/2019 SE187930.021	SOIL - 8/1/2019 SE187930.023
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

OP Pesticides in Soil [AN420] Tested: 11/1/2019 (continued)

			BH119_0.2-0.3	BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3
			SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019	SOIL - 8/1/2019
PARAMETER	UOM	LOR	SE187930.024	SE187930.026	SE187930.027	SE187930.028
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 11/1/2019

			BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.2-0.3	BH106_0.2-0.3	BH108_0.1-0.2
			SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019	SOIL - 7/1/2019
PARAMETER	UOM	LOR	SE187930.002	SE187930.004	SE187930.006	SE187930.008	SE187930.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH109_0.2-0.3	BH110_0.2-0.3	BH112_0.1-0.2	BH114_0.1-0.2	BH115_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 7/1/2019 SE187930.011	SOIL - 7/1/2019 SE187930.012	SOIL - 7/1/2019 SE187930.014	SOIL - 8/1/2019 SE187930.016	SOIL - 8/1/2019 SE187930.017
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2	BH117_1.0-1.1	BH118M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/1/2019	- 8/1/2019	- 8/1/2019	- 8/1/2019	- 8/1/2019
PARAMETER	UOM	LOR	SE187930.018	SE187930.019	SE187930.020	SE187930.021	SE187930.023
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

PCBs in Soil [AN420] Tested: 11/1/2019 (continued)

			BH119_0.2-0.3	BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			- 8/1/2019	- 8/1/2019	- 8/1/2019	- 8/1/2019
PARAMETER	UOM	LOR	SE187930.024	SE187930.026	SE187930.027	SE187930.028
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

SE187930 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 11/1/2019

			BH101M_0.5-0.6	BH102_0.2-0.3	BH102_0.9-1.0	BH103_0.1-0.2	BH103_0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	7/1/2019 SE187930.001	7/1/2019 SE187930.002	7/1/2019 SE187930.003	7/1/2019 SE187930.004	7/1/2019 SE187930.005
Arsenic, As	mg/kg	1	6	7	8	6	7
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	1.1
Chromium, Cr	mg/kg	0.3	68	21	30	35	27
Copper, Cu	mg/kg	0.5	1.2	11	0.5	1.0	59
Lead, Pb	mg/kg	1	8	64	10	13	110
Nickel, Ni	mg/kg	0.5	2.6	2.9	<0.5	0.5	3.2
Zinc, Zn	mg/kg	2	8.1	47	5.0	9.9	99

			BH104_0.2-0.3	BH105_0.5-0.6	BH106_0.2-0.3	BH107_0.5-0.6	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE187930.006	SE187930.007	SE187930.008	SE187930.009	SE187930.010
Arsenic, As	mg/kg	1	4	6	7	7	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	42	57	26	53	30
Copper, Cu	mg/kg	0.5	33	1.1	2.2	1.1	2.4
Lead, Pb	mg/kg	1	41	8	19	12	12
Nickel, Ni	mg/kg	0.5	33	2.2	1.4	1.4	1.4
Zinc, Zn	mg/kg	2	50	7.4	8.3	19	6.9

							1
			BH109_0.2-0.3	BH110_0.2-0.3	BH111_0.5-0.6	BH112_0.1-0.2	BH113_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			7/1/2019	7/1/2019	7/1/2019	7/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.013	SE187930.014	SE187930.015
Arsenic, As	mg/kg	1	7	7	4	7	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	36	44	61	34	24
Copper, Cu	mg/kg	0.5	2.8	5.3	2.1	15	0.8
Lead, Pb	mg/kg	1	28	21	9	100	14
Nickel, Ni	mg/kg	0.5	4.9	3.3	2.4	3.1	0.6
Zinc, Zn	mg/kg	2	15	20	8.6	63	7.2

			BH114_0.1-0.2	BH115_0.2-0.3	BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	8/1/2019 SE187930.016	8/1/2019 SE187930.017	8/1/2019 SE187930.018	8/1/2019 SE187930.019	8/1/2019 SE187930.020
Arsenic, As	mg/kg	1	32	17	4	7	11
Cadmium, Cd	mg/kg	0.3	0.5	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	18	12	2.5	3.8	5.8
Copper, Cu	mg/kg	0.5	12	9.3	2.4	6.8	8.6
Lead, Pb	mg/kg	1	41	18	4	12	9
Nickel, Ni	mg/kg	0.5	2.3	1.6	1.3	1.1	0.8
Zinc, Zn	mg/kg	2	70	31	7.1	20	9.8

SE187930 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 11/1/2019

			BH117_1.0-1.1	BH117_1.9-2.0	BH118M_0.2-0.3	BH119_0.2-0.3	BH119_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/1/2019	- 8/1/2019	- 8/1/2019	- 8/1/2019	- 8/1/2019
PARAMETER	UOM	LOR	SE187930.021	SE187930.022	SE187930.023	SE187930.024	SE187930.025
Arsenic, As	mg/kg	1	9	7	8	130	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	1.9	<0.3
Chromium, Cr	mg/kg	0.3	5.4	6.0	14	17	4.7
Copper, Cu	mg/kg	0.5	11	4.1	5.0	5.3	6.8
Lead, Pb	mg/kg	1	9	7	24	340	5
Nickel, Ni	mg/kg	0.5	0.9	<0.5	2.7	1.4	<0.5
Zinc, Zn	mg/kg	2	10	3.2	100	33	2.8

			BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3	BH121_1.4-1.5	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	
PARAMETER	UOM	LOR	SE187930.026	SE187930.027	SE187930.028	SE187930.029	SE187930.030
Arsenic, As	mg/kg	1	32	27	21	5	4
Cadmium, Cd	mg/kg	0.3	0.6	<0.3	0.9	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	11	16	14	9.7	17
Copper, Cu	mg/kg	0.5	7.1	2.9	12	6.5	39
Lead, Pb	mg/kg	1	44	14	69	11	41
Nickel, Ni	mg/kg	0.5	3.2	2.2	3.1	<0.5	20
Zinc, Zn	mg/kg	2	63	8.1	35	3.1	42

Mercury in Soil [AN312] Tested: 11/1/2019

			BH101M_0.5-0.6	BH102_0.2-0.3	BH102_0.9-1.0	BH103_0.1-0.2	BH103_0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/1/2019
PARAMETER	UOM	LOR	SE187930.001	SE187930.002	SE187930.003	SE187930.004	SE187930.005
Mercury	mg/kg	0.05	0.07	0.13	<0.05	<0.05	0.54

			BH104_0.2-0.3	BH105_0.5-0.6	BH106_0.2-0.3	BH107_0.5-0.6	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/1/2019
PARAMETER	UOM	LOR	SE187930.006	SE187930.007	SE187930.008	SE187930.009	SE187930.010
Mercury	mg/kg	0.05	0.11	<0.05	<0.05	0.06	<0.05

			BH109_0.2-0.3	BH110_0.2-0.3	BH111_0.5-0.6	BH112_0.1-0.2	BH113_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.013	SE187930.014	SE187930.015
Mercury	mg/kg	0.05	<0.05	0.09	0.07	0.19	<0.05

			BH114_0.1-0.2	BH115_0.2-0.3	BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.016	SE187930.017	SE187930.018	SE187930.019	SE187930.020
Mercury	mg/kg	0.05	0.59	0.16	<0.05	0.59	0.16

			BH117_1.0-1.1	BH117_1.9-2.0	BH118M_0.2-0.3	BH119_0.2-0.3	BH119_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.021	SE187930.022	SE187930.023	SE187930.024	SE187930.025
Mercury	mg/kg	0.05	<0.05	<0.05	2.4	31	0.35

			BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3	BH121_1.4-1.5	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	7/1/2019
PARAMETER	UOM	LOR	SE187930.026	SE187930.027	SE187930.028	SE187930.029	SE187930.030
Mercury	mg/kg	0.05	4.2	<0.05	14	<0.05	<0.05

Moisture Content [AN002] Tested: 11/1/2019

			BH101M_0.5-0.6	BH102_0.2-0.3	BH102_0.9-1.0	BH103_0.1-0.2	BH103_0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							7/1/2019
PARAMETER	UOM	LOR	SE187930.001	SE187930.002	SE187930.003	SE187930.004	SE187930.005
% Moisture	%w/w	0.5	24	9.6	12	20	20

			BH104_0.2-0.3	BH105_0.5-0.6	BH106_0.2-0.3	BH107_0.5-0.6	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			7/1/2019	7/1/2019	7/1/2019	7/1/2019	7/1/2019
PARAMETER	UOM	LOR	SE187930.006	SE187930.007	SE187930.008	SE187930.009	SE187930.010
% Moisture	%w/w	0.5	5.2	18	11	23	16

			BH109_0.2-0.3	BH110_0.2-0.3	BH111_0.5-0.6	BH112_0.1-0.2	BH113_0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.013	SE187930.014	SE187930.015
% Moisture	%w/w	0.5	18	11	24	12	15

			BH114_0.1-0.2	BH115_0.2-0.3	BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.016	SE187930.017	SE187930.018	SE187930.019	SE187930.020
% Moisture	%w/w	0.5	12	13	12	11	12

			BH117_1.0-1.1	BH117_1.9-2.0	BH118M_0.2-0.3	BH119_0.2-0.3	BH119_1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.021	SE187930.022	SE187930.023	SE187930.024	SE187930.025
% Moisture	%w/w	0.5	13	19	17	23	15

			BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3	BH121_1.4-1.5	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	7/1/2019
PARAMETER	UOM	LOR	SE187930.026	SE187930.027	SE187930.028	SE187930.029	SE187930.030
% Moisture	%w/w	0.5	23	22	16	19	5.5

			BH100_QTB1
			SOIL
			-
			8/1/2019
PARAMETER	UOM	LOR	SE187930.033
% Moisture	%w/w	0.5	<0.5

Fibre Identification in soil [AN602] Tested: 15/1/2019

			BH102_0.2-0.3	BH103_0.1-0.2	BH104_0.2-0.3	BH106_0.2-0.3	BH108_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE187930.002	SE187930.004	SE187930.006	SE187930.008	SE187930.010
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH109_0.2-0.3	BH110_0.2-0.3	BH112_0.1-0.2	BH114_0.1-0.2	BH115_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.011	SE187930.012	SE187930.014	SE187930.016	SE187930.017
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH116_0.2-0.3	BH116_0.8-0.9	BH117_0.1-0.2	BH117_1.0-1.1	BH118M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/1/2019	8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.018	SE187930.019	SE187930.020	SE187930.021	SE187930.023
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH119_0.2-0.3	BH120_0.1-0.2	BH120_1.4-1.5	BH121_0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			8/1/2019	8/1/2019	8/1/2019	8/1/2019
PARAMETER	UOM	LOR	SE187930.024	SE187930.026	SE187930.027	SE187930.028
Asbestos Detected	No unit	-	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01

VOCs in Water [AN433] Tested: 14/1/2019

			BH100_QR1
			WATER
			- 8/1/2019
PARAMETER	UOM	LOR	SE187930.031
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	1.0
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 14/1/2019

			BH100_QR1
			WATER
			- 8/1/2019
PARAMETER	UOM	LOR	SE187930.031
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE187930 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 14/1/2019

			BH100_QR1
PARAMETER	UOM	LOR	WATER - 8/1/2019 SE187930.031
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 15/1/2019

			BH100_QR1
PARAMETER	UOM	LOR	WATER - 8/1/2019 SE187930.031
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	μg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 14/1/2019

			BH100_QR1
			WATER
			- 8/1/2019
PARAMETER	UOM	LOR	SE187930.031
Mercury	mg/L	0.0001	<0.0001

METHOD	
METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	emmanuel.woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23975 Pymble Golf Club St Ives	SGS Reference	SE187930 R0
Order Number	E23975	Date Received	09 Jan 2019
Samples	33	Date Reported	17 Jan 2019

COMMENTS _

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item
Matrix Spike	Mercury in Soil	1 item
	Mercury in Soil	1 item
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	32 Soil 1 Water
Date documentation received	9/1/2019	Type of documentation received	COC
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	8.9°C	Sufficient sample for analysis	Yes
Turnaround time requested	Standard		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

5 Australia 5 Australia

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

17/1/2019

Method: ME (ALI) (ENI)/JAN(212

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN60
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH102_0.2-0.3	SE187930.002	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH103_0.1-0.2	SE187930.004	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH104_0.2-0.3	SE187930.006	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH106_0.2-0.3	SE187930.008	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH108_0.1-0.2	SE187930.010	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH109_0.2-0.3	SE187930.011	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH110_0.2-0.3	SE187930.012	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH112_0.1-0.2	SE187930.014	LB164637	07 Jan 2019	09 Jan 2019	07 Jan 2020	15 Jan 2019	07 Jan 2020	16 Jan 2019
BH114_0.1-0.2	SE187930.016	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH115_0.2-0.3	SE187930.017	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH116_0.2-0.3	SE187930.018	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH116_0.8-0.9	SE187930.019	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH117_0.1-0.2	SE187930.020	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH117_1.0-1.1	SE187930.021	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH119_0.2-0.3	SE187930.024	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164637	08 Jan 2019	09 Jan 2019	08 Jan 2020	15 Jan 2019	08 Jan 2020	16 Jan 2019
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]	AN311(Perth)/AN3
Sample Name	Sample No	OC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Duo	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH100_QR1	SE187930.031	LB164495	08 Jan 2019	09 Jan 2019	05 Feb 2019	14 Jan 2019	05 Feb 2019	14 Jan 2019

Manager In Oall

Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.5-0.6	SE187930.001	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH102_0.2-0.3	SE187930.002	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH102_0.9-1.0	SE187930.003	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH103_0.1-0.2	SE187930.004	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH103_0.6-0.7	SE187930.005	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH104_0.2-0.3	SE187930.006	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH105_0.5-0.6	SE187930.007	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH106_0.2-0.3	SE187930.008	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH107_0.5-0.6	SE187930.009	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH108_0.1-0.2	SE187930.010	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH109_0.2-0.3	SE187930.011	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH110_0.2-0.3	SE187930.012	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH111_0.5-0.6	SE187930.013	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH112_0.1-0.2	SE187930.014	LB164437	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
BH113_0.5-0.6	SE187930.015	LB164437	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH114_0.1-0.2	SE187930.016	LB164437	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH115_0.2-0.3	SE187930.017	LB164437	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH116_0.2-0.3	SE187930.018	LB164437	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH116_0.8-0.9	SE187930.019	LB164437	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH117_0.1-0.2	SE187930.020	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH117_1.0-1.1	SE187930.021	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH117_1.9-2.0	SE187930.022	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH119_0.2-0.3	SE187930.024	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH119_1.0-1.1	SE187930.025	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164438	08 Jan 2019	09 Jan 2019	05 Feb 2019	11 Jan 2019	05 Feb 2019	15 Jan 2019
QD1	SE187930.030	LB164438	07 Jan 2019	09 Jan 2019	04 Feb 2019	11 Jan 2019	04 Feb 2019	15 Jan 2019
Moisture Content							Method: I	ME-(AU)-[ENV]AN002

Sample Name Sample No. QC Ref

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.5-0.6	SE187930.001	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
	SE187930.002	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH102_0.9-1.0	SE187930.003	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH103_0.1-0.2	SE187930.004	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH103_0.6-0.7	SE187930.005	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH104_0.2-0.3	SE187930.006	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH105_0.5-0.6	SE187930.007	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH105_0.3-0.0 BH106_0.2-0.3	SE187930.008	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH100_0.2-0.5 BH107_0.5-0.6	SE187930.009	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019		16 Jan 2019	15 Jan 2019
			07 Jan 2019	09 Jan 2019		11 Jan 2019 11 Jan 2019	16 Jan 2019	
BH108_0.1-0.2	SE187930.010	LB164433	07 Jan 2019		21 Jan 2019			15 Jan 2019
3H109_0.2-0.3	SE187930.011	LB164433		09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H110_0.2-0.3	SE187930.012	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H111_0.5-0.6	SE187930.013	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H112_0.1-0.2	SE187930.014	LB164433	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H113_0.5-0.6	SE187930.015	LB164433	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
H114_0.1-0.2	SE187930.016	LB164433	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H115_0.2-0.3	SE187930.017	LB164433	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
BH116_0.2-0.3	SE187930.018	LB164433	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H116_0.8-0.9	SE187930.019	LB164433	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H117_0.1-0.2	SE187930.020	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H117_1.0-1.1	SE187930.021	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H117_1.9-2.0	SE187930.022	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H118M_0.2-0.3	SE187930.023	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
H119_0.2-0.3	SE187930.024	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
H119_1.0-1.1	SE187930.025	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
H120_0.1-0.2	SE187930.026	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
	SE187930.027	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H121_0.2-0.3	SE187930.028	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H121_1.4-1.5	SE187930.029	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
2D1	SE187930.030	LB164434	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
3H100_QTB1	SE187930.033	LB164434	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	16 Jan 2019	15 Jan 2019
	02101000.000	LBIOTIOT	00 001 2010	00 0011 2010		1100112010		
C Pesticides in Soil								ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H101M_0.5-0.6	SE187930.001	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
H102_0.2-0.3	SE187930.002	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
H102_0.9-1.0	SE187930.003	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
H103_0.1-0.2	SE187930.004	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
H103_0.6-0.7	SE187930.005	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
3H104_0.2-0.3	SE187930.006	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
3H105_0.5-0.6	SE187930.007	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
3H106_0.2-0.3	SE187930.008	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
3H107_0.5-0.6	SE187930.009	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
3H108_0.1-0.2	SE187930.010	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
3H109_0.2-0.3	SE187930.011	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
3H110_0.2-0.3	SE187930.012	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
H111_0.5-0.6	SE187930.013	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
H112_0.1-0.2	SE187930.014	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH113_0.5-0.6	SE187930.015	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
8H114_0.1-0.2	SE187930.016	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH115_0.2-0.3	SE187930.017	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
H116_0.2-0.3	SE187930.017	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
3H116_0.8-0.9	SE187930.019	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
8H117_0.1-0.2	SE187930.020	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
3H117_1.0-1.1	SE187930.021	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
11117 1 0 0 0	05403000 000	1 040 1100	00 1- 00/0	00 1. 00 10	00 1- 00 10	44 1-4 0010	00 5-1 0010	40.1 00.15
H117_1.9-2.0	SE187930.022	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019

09 Jan 2019

09 Jan 2019

09 Jan 2019

09 Jan 2019

22 Jan 2019

22 Jan 2019

22 Jan 2019

22 Jan 2019

11 Jan 2019

11 Jan 2019

11 Jan 2019

11 Jan 2019

20 Feb 2019

20 Feb 2019

20 Feb 2019

20 Feb 2019

BH118M 0.2-0.3

BH119_0.2-0.3

BH119_1.0-1.1

BH120_0.1-0.2

SE187930.023

SE187930.024

SE187930.025

SE187930.026

LB164432

LB164432

LB164432

LB164432

08 Jan 2019

08 Jan 2019

08 Jan 2019

08 Jan 2019

16 Jan 2019

16 Jan 2019

16 Jan 2019

16 Jan 2019

Method: ME-(AU)-[ENV]AN420

Mothod: ME (ALD JENN/JAN/20

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

OP Posticidos in Sol

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH120_1.4-1.5	SE187930.027	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
QD1	SE187930.030	LB164432	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019

OP Pesticides in Soil							Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.5-0.6	SE187930.001	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH102_0.2-0.3	SE187930.002	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH102_0.9-1.0	SE187930.003	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH103_0.1-0.2	SE187930.004	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH103_0.6-0.7	SE187930.005	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH104_0.2-0.3	SE187930.006	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH105_0.5-0.6	SE187930.007	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH106_0.2-0.3	SE187930.008	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH107_0.5-0.6	SE187930.009	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH108_0.1-0.2	SE187930.010	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH109_0.2-0.3	SE187930.011	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH110_0.2-0.3	SE187930.012	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH111_0.5-0.6	SE187930.013	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH112_0.1-0.2	SE187930.014	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH113_0.5-0.6	SE187930.015	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH114_0.1-0.2	SE187930.016	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH115_0.2-0.3	SE187930.017	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.2-0.3	SE187930.018	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.8-0.9	SE187930.019	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH117_0.1-0.2	SE187930.020	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.0-1.1	SE187930.021	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.9-2.0	SE187930.022	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_0.2-0.3	SE187930.024	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_1.0-1.1	SE187930.025	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

SE187930.030

LB164432

07 Jan 2019

Method: ME-(AU)-[ENV]AN420 Sample Name Analysis Due Analysed Sampled Extraction Due Sample No. QC Ref Received Extracted BH101M 0.5-0.6 SE187930.001 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH102_0.2-0.3 SE187930.002 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH102 0.9-1.0 SE187930.003 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH103 0.1-0.2 SE187930.004 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH103 0.6-0.7 LB164431 SE187930.005 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH104_0.2-0.3 SE187930.006 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH105_0.5-0.6 SE187930.007 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH106 0.2-0.3 SE187930.008 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH107_0.5-0.6 SE187930.009 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH108 0.1-0.2 SE187930.010 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH109_0.2-0.3 SE187930.011 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH110_0.2-0.3 SE187930.012 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH111 0.5-0.6 SE187930.013 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH112_0.1-0.2 SE187930.014 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 SE187930.015 LB164431 09 Jan 2019 22 Jan 2019 20 Feb 2019 15 Jan 2019 BH113_0.5-0.6 08 Jan 2019 11 Jan 2019 BH114_0.1-0.2 SE187930.016 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH115_0.2-0.3 SE187930.017 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH116 0.2-0.3 LB164431 SE187930.018 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH116_0.8-0.9 SE187930.019 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 08 Jan 2019 09 Jan 2019 22 Jan 2019 BH117_0.1-0.2 SE187930.020 LB164432 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH117 1.0-1.1 LB164432 SE187930.021 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019

09 Jan 2019

21 Jan 2019

11 Jan 2019

20 Feb 2019

16 Jan 2019

QD1

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH117_1.9-2.0	SE187930.022	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_0.2-0.3	SE187930.024	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_1.0-1.1	SE187930.025	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
QD1	SE187930.030	LB164432	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019

PCBs in Soil							Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.5-0.6	SE187930.001	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH102_0.2-0.3	SE187930.002	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH102_0.9-1.0	SE187930.003	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH103_0.1-0.2	SE187930.004	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH103_0.6-0.7	SE187930.005	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH104_0.2-0.3	SE187930.006	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH105_0.5-0.6	SE187930.007	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH106_0.2-0.3	SE187930.008	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH107_0.5-0.6	SE187930.009	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH108_0.1-0.2	SE187930.010	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH109_0.2-0.3	SE187930.011	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH110_0.2-0.3	SE187930.012	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH111_0.5-0.6	SE187930.013	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH112_0.1-0.2	SE187930.014	LB164431	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH113_0.5-0.6	SE187930.015	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH114_0.1-0.2	SE187930.016	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH115_0.2-0.3	SE187930.017	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.2-0.3	SE187930.018	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.8-0.9	SE187930.019	LB164431	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH117_0.1-0.2	SE187930.020	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.0-1.1	SE187930.021	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.9-2.0	SE187930.022	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_0.2-0.3	SE187930.024	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_1.0-1.1	SE187930.025	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164432	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
QD1	SE187930.030	LB164432	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
Total Recoverable Eleme	nts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU	J)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RH101M 0 5 0 6	SE197020.001	1 0164425	07 lon 2010	00 Jap 2010	06 Jul 2010	11 Jon 2010	06 Jul 2010	15 Jon 2010

BH101M 0.5-0.6 SE187930.001 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH102_0.2-0.3 SE187930.002 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH102 0.9-1.0 SE187930.003 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH103_0.1-0.2 SE187930.004 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH103 0.6-0.7 SE187930.005 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH104 0.2-0.3 SE187930.006 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH105_0.5-0.6 SE187930.007 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH106 0.2-0.3 SE187930.008 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH107_0.5-0.6 SE187930.009 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH108_0.1-0.2 SE187930.010 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 06 Jul 2019 15 Jan 2019 11 Jan 2019 BH109_0.2-0.3 SE187930.011 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH110_0.2-0.3 SE187930.012 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH111 0.5-0.6 SE187930.013 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 06 Jul 2019 15 Jan 2019 11 Jan 2019 BH112_0.1-0.2 SE187930.014 LB164435 07 Jan 2019 09 Jan 2019 06 Jul 2019 11 Jan 2019 06 Jul 2019 15 Jan 2019 BH113_0.5-0.6 SE187930.015 LB164435 08 Jan 2019 09 Jan 2019 07 Jul 2019 11 Jan 2019 07 Jul 2019 15 Jan 2019 SE187930.016 LB164435 07 Jul 2019 BH114 0.1-0.2 08 Jan 2019 09 Jan 2019 07 Jul 2019 11 Jan 2019 15 Jan 2019

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN040/AN320

Analysis Due

07 Jul 2019

Extracted

11.Jan 2019

Analysed

15 Jan 2019

Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

QC Ref Sampled Sample Name Sample No. Received Extraction Due BH115 0.2-0.3 SE187930.017 I B164435 08.Jan 2019 09.lan 2019 07 Jul 2019 BH116 0.2-0.3 SE187930.018 LB164435 08 Jan 2019 09 Jan 2019 07 Jul 2019

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)

BH116_0.2-0.3	SE187930.018	LB164435	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH116_0.8-0.9	SE187930.019	LB164435	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH117_0.1-0.2	SE187930.020	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH117_1.0-1.1	SE187930.021	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH117_1.9-2.0	SE187930.022	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH119_0.2-0.3	SE187930.024	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH119_1.0-1.1	SE187930.025	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164436	08 Jan 2019	09 Jan 2019	07 Jul 2019	11 Jan 2019	07 Jul 2019	15 Jan 2019
QD1	SE187930.030	LB164436	07 Jan 2019	09 Jan 2019	06 Jul 2019	11 Jan 2019	06 Jul 2019	15 Jan 2019
Frace Metals (Dissolved) in	Water by ICPMS						Method: M	/IE-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH100_QR1	SE187930.031	LB164585	08 Jan 2019	09 Jan 2019	07 Jul 2019	15 Jan 2019	07 Jul 2019	15 Jan 2019

Analysed Sample Name Sampled Received Sample No. Extraction Due Extracted Analysis Due QC Ref BH101M 0.5-0.6 SE187930.001 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH102_0.2-0.3 SE187930.002 LB164431 09 Jan 2019 21 Jan 2019 20 Feb 2019 15 Jan 2019 07 Jan 2019 11 Jan 2019 BH102 0.9-1.0 SE187930.003 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH103_0.1-0.2 SE187930.004 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH103 0.6-0.7 SE187930.005 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 07 Jan 2019 BH104_0.2-0.3 SE187930.006 LB164431 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH105 0.5-0.6 SE187930.007 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 20 Feb 2019 15 Jan 2019 11 Jan 2019 BH106 0 2-0 3 SE187930.008 I B164431 07. Jan 2019 09 Jan 2019 21.Jan 2019 11 Jan 2019 20 Eeb 2019 15 Jan 2019 BH107_0.5-0.6 SE187930.009 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH108 0.1-0.2 LB164431 SE187930.010 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH109_0.2-0.3 SE187930.011 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH110 0.2-0.3 SE187930.012 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH111 0.5-0.6 SE187930.013 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH112_0.1-0.2 SE187930.014 LB164431 07 Jan 2019 09 Jan 2019 21 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 SE187930.015 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 20 Feb 2019 BH113 0.5-0.6 11 Jan 2019 15 Jan 2019 BH114 0.1-0.2 SE187930.016 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH115_0.2-0.3 SE187930.017 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH116 0.2-0.3 SE187930.018 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 BH116_0.8-0.9 SE187930.019 LB164431 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 15 Jan 2019 LB164432 22 Jan 2019 BH117_0.1-0.2 SE187930.020 08 Jan 2019 09 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH117_1.0-1.1 SE187930.021 LB164432 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH117 1.9-2.0 SE187930.022 LB164432 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH118M 0.2-0.3 LB164432 20 Feb 2019 SE187930.023 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 16 Jan 2019 BH119_0.2-0.3 SE187930.024 LB164432 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH119_1.0-1.1 SE187930.025 LB164432 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH120 0.1-0.2 SE187930.026 LB164432 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH120_1.4-1.5 SE187930.027 LB164432 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH121 0.2-0.3 SE187930.028 LB164432 08 Jan 2019 09 Jan 2019 22 Jan 2019 11 Jan 2019 20 Feb 2019 16 Jan 2019 BH121_1.4-1.5 SE187930.029 LB164432 08 Jan 2019 09. Jan 2019 22 Jan 2019 11 Jan 2019 20 Eeb 2019 16 Jan 2019 21 Jan 2019 QD1 LB164432 07 Jan 2019 09 Jan 2019 20 Feb 2019 SE187930.030 11 Jan 2019 16 Jan 2019 TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-/ENVIAN403 Sample Name Sample <u>No.</u> Sampled Received Extraction Due Extracted Analysis Due Analysed QC Ref

 Sample Name
 Sample No.
 QC Ref
 Sampled
 Received
 Extraction Due
 Extracted
 Analysis Due
 Analysed

 BH100_QR1
 SE187930.031
 LB164491
 08 Jan 2019
 09 Jan 2019
 15 Jan 2019
 14 Jan 2019
 23 Feb 2019
 16 Jan 2019

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.5-0.6	SE187930.001	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH102 0.2-0.3	SE187930.002	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019

VOC's in Soil

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued)

VOC's in Soil (continued)							Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH102_0.9-1.0	SE187930.003	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH103_0.1-0.2	SE187930.004	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH103_0.6-0.7	SE187930.005	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH104_0.2-0.3	SE187930.006	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH105_0.5-0.6	SE187930.007	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH106_0.2-0.3	SE187930.008	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH107_0.5-0.6	SE187930.009	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH108_0.1-0.2	SE187930.010	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH109_0.2-0.3	SE187930.011	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH110_0.2-0.3	SE187930.012	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH111_0.5-0.6	SE187930.013	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH112_0.1-0.2	SE187930.014	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH113_0.5-0.6	SE187930.015	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH114_0.1-0.2	SE187930.016	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH115_0.2-0.3	SE187930.017	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.2-0.3	SE187930.018	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.8-0.9	SE187930.019	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH117_0.1-0.2	SE187930.020	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.0-1.1	SE187930.021	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.9-2.0	SE187930.022	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_0.2-0.3	SE187930.024	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_1.0-1.1	SE187930.025	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
QD1	SE187930.030	LB164430	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH100_QTS1	SE187930.032	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH100_QTB1	SE187930.033	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
/OCs in Water							Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH100 QR1	SE187930.031	LB164551	08 Jan 2019	09 Jan 2019	15 Jan 2019	14 Jan 2019	23 Feb 2019	16 Jan 2019

Volatile Petroleum Hydrocarbons in Soil

Method: N	/IE-(AU)-	(ENVJAN433
-----------	-----------	------------

Toldalo F od oloann Hyaro.							moulouri	me (and) ferrarily and
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.5-0.6	SE187930.001	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH102_0.2-0.3	SE187930.002	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH102_0.9-1.0	SE187930.003	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH103_0.1-0.2	SE187930.004	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH103_0.6-0.7	SE187930.005	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH104_0.2-0.3	SE187930.006	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH105_0.5-0.6	SE187930.007	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH106_0.2-0.3	SE187930.008	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH107_0.5-0.6	SE187930.009	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH108_0.1-0.2	SE187930.010	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH109_0.2-0.3	SE187930.011	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH110_0.2-0.3	SE187930.012	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH111_0.5-0.6	SE187930.013	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH112_0.1-0.2	SE187930.014	LB164428	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH113_0.5-0.6	SE187930.015	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH114_0.1-0.2	SE187930.016	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH115_0.2-0.3	SE187930.017	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.2-0.3	SE187930.018	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH116_0.8-0.9	SE187930.019	LB164428	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	15 Jan 2019
BH117_0.1-0.2	SE187930.020	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.0-1.1	SE187930.021	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH117_1.9-2.0	SE187930.022	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH118M_0.2-0.3	SE187930.023	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil (continued)

Volatile Petroleum Hydro	carbons in Soil (continued)						Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH119_0.2-0.3	SE187930.024	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH119_1.0-1.1	SE187930.025	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_0.1-0.2	SE187930.026	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH120_1.4-1.5	SE187930.027	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_0.2-0.3	SE187930.028	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH121_1.4-1.5	SE187930.029	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
QD1	SE187930.030	LB164430	07 Jan 2019	09 Jan 2019	21 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH100_QTS1	SE187930.032	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
BH100_QTB1	SE187930.033	LB164430	08 Jan 2019	09 Jan 2019	22 Jan 2019	11 Jan 2019	20 Feb 2019	16 Jan 2019
Volatile Petroleum Hydro	carbons in Water						Method: I	ME-(AU)-[ENV]AN4

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH100_QR1	SE187930.031	LB164551	08 Jan 2019	09 Jan 2019	15 Jan 2019	14 Jan 2019	23 Feb 2019	16 Jan 2019

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH102_0.2-0.3	SE187930.002	%	60 - 130%	87
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	95
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	87
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	78
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	102
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	99
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	94
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	79
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	71
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	79
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	72
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	75
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	70
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	72
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	77
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	71
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	71
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	73
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	76
P Pesticides in Soil				Method: M	e-(au)-[env]an
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH102_0.2-0.3	SE187930.002	%	60 - 130%	98
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	100
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	102
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	102
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	102
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	104
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	100
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	102
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	102
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	100
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	100
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	96
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	82
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	90
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	96
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	94
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	92
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	94
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	94
d14-p-terphenyl (Surrogate)	BH102_0.2-0.3	SE187930.002	%	60 - 130%	108
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	110
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	112
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	110
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	114
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	112
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	108
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	108
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	110
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	108
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	108
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	106
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	90
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	96
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	104
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	104
			%	60 - 130%	102
	BH120_0.1-0.2	SE187930.026			
	BH120_0.1-0.2 BH120_1.4-1.5	SE187930.026	%	60 - 130%	102

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 Recovery % Units Parameter Sample Name Sample Number Criteria 2-fluorobiphenyl (Surrogate) BH101M_0.5-0.6 SE187930.001 % 70 - 130% 102 BH102_0.2-0.3 SE187930.002 70 - 130% 98 % BH102 0.9-1.0 SE187930.003 % 70 - 130% 102 BH103_0.1-0.2 SE187930.004 70 - 130% 100 % BH103_0.6-0.7 SE187930.005 70 - 130% 100 % BH104 0.2-0.3 SE187930.006 % 70 - 130% 102 BH105 0.5-0.6 SE187930.007 % 70 - 130% 102 BH106_0.2-0.3 SE187930.008 % 70 - 130% 102 BH107 0.5-0.6 SE187930.009 % 70 - 130% 102 BH108 0.1-0.2 SE187930.010 70 - 130% 102 % BH109_0.2-0.3 SE187930.011 % 70 - 130% 104 BH110 0.2-0.3 SE187930.012 % 70 - 130% 100 BH111 0.5-0.6 SE187930.013 % 70 - 130% 102 BH112_0.1-0.2 SE187930.014 70 - 130% 102 % BH113 0.5-0.6 SE187930.015 % 70 - 130% 100 BH114_0.1-0.2 SE187930.016 70 - 130% 102 % BH115_0.2-0.3 SE187930.017 % 70 - 130% 100 BH116 0.2-0.3 SE187930.018 % 70 - 130% 100 BH116 0.8-0.9 SE187930.019 % 70 - 130% 96 BH117_0.1-0.2 SE187930.020 70 - 130% 82 % BH117 1.0-1.1 SE187930.021 % 70 - 130% 90 BH117_1.9-2.0 SE187930.022 70 - 130% 96 % BH118M_0.2-0.3 SE187930.023 % 70 - 130% 96 BH119 0.2-0.3 SE187930.024 % 70 - 130% 94 BH119 1.0-1.1 SE187930 025 % 70 - 130% 94 BH120_0.1-0.2 SE187930.026 % 70 - 130% 92 BH120_1.4-1.5 SE187930.027 % 70 - 130% 94 BH121 0.2-0.3 SE187930.028 % 70 - 130% 94 BH121_1.4-1.5 SE187930.029 % 70 - 130% 94 d14-p-terphenyl (Surrogate) BH101M 0.5-0.6 SE187930.001 % 70 - 130% 110 BH102 0.2-0.3 SE187930.002 % 70 - 130% 108 BH102_0.9-1.0 SE187930.003 % 70 - 130% 110 BH103 0.1-0.2 SE187930.004 % 70 - 130% 110 BH103 0.6-0.7 SE187930.005 70 - 130% 108 % BH104_0.2-0.3 SE187930.006 70 - 130% 112 % BH105 0.5-0.6 SE187930.007 % 70 - 130% 110 BH106 0.2-0.3 SE187930.008 70 - 130% 110 % BH107_0.5-0.6 SE187930.009 % 70 - 130% 110 BH108 0.1-0.2 SE187930.010 % 70 - 130% 114 BH109 0 2-0 3 SE187930.011 % 70 - 130% 112 SE187930.012 70 - 130% 108 BH110_0.2-0.3 % 110 BH111_0.5-0.6 SE187930.013 70 - 130% % BH112 0.1-0.2 SE187930.014 % 70 - 130% 108 BH113_0.5-0.6 SE187930.015 % 70 - 130% 108 110 BH114 0.1-0.2 SE187930.016 % 70 - 130% BH115 0 2-0 3 SE187930.017 70 - 130% 108 % BH116_0.2-0.3 SE187930.018 % 70 - 130% 108 BH116_0.8-0.9 SE187930.019 106 % 70 - 130% BH117 0.1-0.2 SE187930.020 70 - 130% 90 % BH117_1.0-1.1 SE187930.021 % 70 - 130% 96 106 BH117 1.9-2.0 SE187930.022 % 70 - 130% BH118M 0.2-0.3 SE187930.023 70 - 130% 104 % BH119_0.2-0.3 SE187930.024 % 70 - 130% 104 BH119 1.0-1.1 SE187930.025 % 70 - 130% 104 BH120_0.1-0.2 SE187930.026 70 - 130% 102 % BH120_1.4-1.5 SE187930.027 70 - 130% 104 % 102 BH121_0.2-0.3 SE187930.028 70 - 130% % BH121 1.4-1.5 SE187930.029 % 70 - 130% 102 BH101M_0.5-0.6 SE187930.001 70 - 130% d5-nitrobenzene (Surrogate) % 100 SE187930.002 BH102 0.2-0.3 % 70 - 130% 98

BH102 0.9-1.0

SE187930.003

100

70 - 130%

%

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Units Parameter Sample Name Sample Number Criteria d5-nitrobenzene (Surrogate) BH103_0.1-0.2 SE187930.004 % 70 - 130% 100 BH103_0.6-0.7 SE187930.005 70 - 130% % 100 BH104 0.2-0.3 SE187930.006 % 70 - 130% 102 BH105_0.5-0.6 SE187930.007 70 - 130% 100 % BH106_0.2-0.3 SE187930.008 70 - 130% 100 % BH107 0.5-0.6 SE187930.009 % 70 - 130% 102 BH108 0.1-0.2 SE187930.010 % 70 - 130% 102 BH109_0.2-0.3 SE187930.011 % 70 - 130% 102 BH110 0.2-0.3 SE187930.012 % 70 - 130% 102 BH111 0.5-0.6 SE187930.013 70 - 130% 104 % BH112_0.1-0.2 SE187930.014 % 70 - 130% 104 BH113 0.5-0.6 SE187930.015 % 70 - 130% 104 BH114 0.1-0.2 SE187930.016 % 70 - 130% 106 BH115_0.2-0.3 SE187930.017 % 70 - 130% 104 BH116 0.2-0.3 SE187930.018 % 70 - 130% 104 BH116_0.8-0.9 SE187930.019 70 - 130% 100 % BH117_0.1-0.2 SE187930.020 % 70 - 130% 84 BH117 1.0-1.1 SE187930.021 % 70 - 130% 92 BH117 1.9-2.0 SE187930.022 % 70 - 130% 98 BH118M_0.2-0.3 SE187930.023 70 - 130% 100 % BH119 0.2-0.3 SE187930.024 % 70 - 130% 100 BH119_1.0-1.1 SE187930.025 70 - 130% 98 % BH120_0.1-0.2 SE187930.026 % 70 - 130% 96 BH120 1.4-1.5 SE187930.027 % 70 - 130% 98 BH121 0.2-0.3 SE187930.028 % 70 - 130% 102 BH121_1.4-1.5 SE187930.029 % 70 - 130% 98 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Recovery % Sample Name Sample Numb Criteria Parameter Units Tetrachloro-m-xylene (TCMX) (Surrogate) BH102 0.2-0.3 SE187930.002 60 - 130% 87 % BH103_0.1-0.2 SE187930.004 % 60 - 130% 95 BH104 0.2-0.3 SE187930.006 % 60 - 130% 87 BH106_0.2-0.3 SE187930.008 % 60 - 130% 78 BH108_0.1-0.2 SE187930.010 % 60 - 130% 102 BH109 0.2-0.3 SE187930.011 % 60 - 130% 99 BH110_0.2-0.3 SE187930.012 % 60 - 130% 94 BH112_0.1-0.2 SE187930.014 60 - 130% 79 % BH114 0.1-0.2 SE187930.016 % 60 - 130% 71 BH115_0.2-0.3 SE187930.017 % 60 - 130% 79 BH116_0.2-0.3 SE187930.018 % 60 - 130% 72 BH116 0.8-0.9 SE187930.019 % 60 - 130% 75 BH117_0.1-0.2 SE187930.020 60 - 130% 70 % 72 BH117_1.0-1.1 SE187930.021 60 - 130% % BH118M 0.2-0.3 SE187930.023 % 60 - 130% 77 BH119_0.2-0.3 SE187930.024 60 - 130% 71 % BH120_0.1-0.2 SE187930.026 60 - 130% 71 % 60 - 130% BH120 1.4-1.5 SE187930.027 % 73 BH121_0.2-0.3 SE187930.028 % 60 - 130% 76 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Parameter Sample Name Sample Numb Units Criteria Recovery % Bromofluorobenzene (Surrogate) BH101M 0.5-0.6 SE187930.001 % 60 - 130% 85 BH102_0.2-0.3 SE187930.002 % 60 - 130% 82 BH102_0.9-1.0 60 - 130% SE187930.003 % 83 BH103 0.1-0.2 SE187930.004 % 60 - 130% 77 BH103_0.6-0.7 SE187930.005 60 - 130% 77 % BH104_0.2-0.3 SE187930.006 60 - 130% 85 % BH105 0.5-0.6 SE187930.007 % 60 - 130% 86 BH106_0.2-0.3 SE187930.008 % 60 - 130% 78 BH107_0.5-0.6 SE187930.009 % 60 - 130% 72

BH108 0.1-0.2

BH109_0.2-0.3

SE187930.010

SE187930.011

%

%

60 - 130%

60 - 130%

76

71

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

/OC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN4:
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH110_0.2-0.3	SE187930.012	%	60 - 130%	81
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	78
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	83
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	80
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	80
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	81
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	83
	_BH116_0.8-0.9	SE187930.019	%	60 - 130%	79
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	80
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	77
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	79
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	80
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	76
	BH119_1.0-1.1	SE187930.025	%	60 - 130%	80
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	82
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	92
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	81
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	76
	QD1	SE187930.030	%	60 - 130%	75
	BH100_QTS1	SE187930.032	%	60 - 130%	86
	BH100_QTB1	SE187930.033	%	60 - 130%	85
d4-1,2-dichloroethane (Surrogate)	BH101M_0.5-0.6	SE187930.001	%	60 - 130%	82
	BH102_0.2-0.3	SE187930.002	%	60 - 130%	87
	BH102_0.9-1.0	SE187930.003	%	60 - 130%	74
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	88
	BH103_0.6-0.7	SE187930.005	%	60 - 130%	77
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	92
	BH105_0.5-0.6	SE187930.007	%	60 - 130%	81
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	71
	BH107_0.5-0.6	SE187930.009	%	60 - 130%	76
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	78
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	77
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	81
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	74
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	94
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	87
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	81
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	71
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	85
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	98
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	81
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	73
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	80
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	86
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	95
	BH119_1.0-1.1	SE187930.025	%	60 - 130%	77
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	85
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	127
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	79
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	77
	QD1	SE187930.030	%	60 - 130%	83
	BH100_QTS1	SE187930.032	%	60 - 130%	84
d0 taluana (Currenata)	BH100_QTB1	SE187930.033	%	60 - 130%	88
d8-toluene (Surrogate)	BH101M_0.5-0.6	SE187930.001	%	60 - 130%	78
	BH102_0.2-0.3	SE187930.002	%	60 - 130%	90
	BH102_0.9-1.0	SE187930.003	%	60 - 130%	88
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	96
	BH103_0.6-0.7	SE187930.005	%	60 - 130%	78
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	83
	BH105_0.5-0.6	SE187930.007	%	60 - 130%	79
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	87

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC's in Soil (continued)					(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH107_0.5-0.6	SE187930.009	%	60 - 130%	79
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	89
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	86
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	86
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	79
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	82
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	95
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	76
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	70
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	79
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	101
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	85
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	94
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	88
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	89
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	81
	BH119_1.0-1.1	SE187930.025	%	60 - 130%	80
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	92
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	89
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	84
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	81
	QD1	SE187930.030	%	60 - 130%	89
	BH100_QTS1	SE187930.032	%	60 - 130%	91
	BH100_QTB1	SE187930.033	%	60 - 130%	91
Dibromofluoromethane (Surrogate)	BH101M_0.5-0.6	SE187930.001	%	60 - 130%	72
	BH102_0.2-0.3	SE187930.002	%	60 - 130%	84
	BH102_0.9-1.0	SE187930.003	%	60 - 130%	76
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	90
	BH103_0.6-0.7	SE187930.005	%	60 - 130%	74
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	81
	BH105_0.5-0.6	SE187930.007	%	60 - 130%	75
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	76
	BH107_0.5-0.6	SE187930.009	%	60 - 130%	71
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	78
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	75
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	70
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	71
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	81
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	78
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	73
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	72
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	79
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	94
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	102
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	71
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	101
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	111
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	123
	BH119_1.0-1.1	SE187930.025	%	60 - 130%	116
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	127
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	126
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	96
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	75
	QD1	SE187930.030	%	60 - 130%	77
	BH100_QTS1	SE187930.032	%	60 - 130%	91
	BH100_QTB1	SE187930.033	%	60 - 130%	96
OCs in Water					(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery ^o
Bromofluorobenzene (Surrogate)	BH100_QR1	SE187930.031	%	40 - 130%	97

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

	0lN	Comula Numb		0	Deserve
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH100_QR1	SE187930.031	%	40 - 130%	110
Dibromofluoromethane (Surrogate)	BH100_QR1	SE187930.031	%	40 - 130%	110
/olatile Petroleum Hydrocarbons in Soil				Method: ME	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	BH101M_0.5-0.6	SE187930.001	%	60 - 130%	85
	BH102_0.2-0.3	SE187930.002	%	60 - 130%	82
	BH102_0.9-1.0	SE187930.003	%	60 - 130%	83
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	77
	BH103_0.6-0.7	SE187930.005	%	60 - 130%	77
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	85
	BH105_0.5-0.6	SE187930.007	%	60 - 130%	86
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	78
	BH107_0.5-0.6	SE187930.009	%	60 - 130%	72
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	76
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	71
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	81
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	78
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	83
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	80
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	80
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	81
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	83
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	79
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	80
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	77
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	79
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	80
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	76
	BH119_1.0-1.1	SE187930.025	%	60 - 130%	80
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	82
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	92
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	81
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	76
	QD1	SE187930.030	%	60 - 130%	75
d4-1,2-dichloroethane (Surrogate)	BH101M_0.5-0.6	SE187930.001	%	60 - 130%	82
	BH102_0.2-0.3	SE187930.002	%	60 - 130%	87
	BH102_0.9-1.0	SE187930.003	%	60 - 130%	74
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	88
	BH103_0.6-0.7	SE187930.005	%	60 - 130%	77
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	92
	BH105_0.5-0.6	SE187930.007	%	60 - 130%	81
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	71
	BH107_0.5-0.6	SE187930.009	%	60 - 130%	76
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	78
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	77
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	81
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	74
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	94
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	87
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	81
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	71
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	85
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	98
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	81
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	73
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	80
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	86
	BH119_0.2-0.3	SE187930.023	%	60 - 130%	95
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	77
	BH120_0.1-0.2	SE187930.025	%	60 - 130%	85

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d4-1,2-dichloroethane (Surrogate)	BH120_1.4-1.5	SE187930.027	%	60 - 130%	127
ut-1,2-dichloroethane (Sunogate)	BH121_0.2-0.3	SE187930.028	%	60 - 130%	79
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	77
	QD1	SE187930.030	%	60 - 130%	83
d8-toluene (Surrogate)	BH101M_0.5-0.6	SE187930.001	%	60 - 130%	78
	BH102_0.2-0.3	SE187930.002	%	60 - 130%	90
	BH102_0.9-1.0	SE187930.002	%	60 - 130%	88
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	96
	BH103_0.6-0.7	SE187930.004	%	60 - 130%	78
		SE187930.005	%	60 - 130%	83
	BH104_0.2-0.3 BH105_0.5-0.6	SE187930.000	%	60 - 130%	79
			%		87
	BH106_0.2-0.3	SE187930.008		60 - 130%	
	BH107_0.5-0.6	SE187930.009	%	60 - 130%	79
	BH108_0.1-0.2	SE187930.010	%	60 - 130%	89
	BH109_0.2-0.3	SE187930.011	%	60 - 130%	86
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	86
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	79
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	82
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	95
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	76
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	70
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	79
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	101
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	85
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	94
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	88
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	89
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	81
	BH119_1.0-1.1	SE187930.025	%	60 - 130%	80
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	92
	BH120_1.4-1.5	SE187930.027	%	60 - 130%	89
	BH121_0.2-0.3	SE187930.028	%	60 - 130%	84
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	81
	 QD1	SE187930.030	%	60 - 130%	89
Dibromofluoromethane (Surrogate)	BH101M_0.5-0.6	SE187930.001	%	60 - 130%	72
	BH102_0.2-0.3	SE187930.002	%	60 - 130%	84
	BH102_0.9-1.0	SE187930.003	%	60 - 130%	76
	BH103_0.1-0.2	SE187930.004	%	60 - 130%	90
	BH103_0.6-0.7	SE187930.005	%	60 - 130%	74
	BH104_0.2-0.3	SE187930.006	%	60 - 130%	81
	BH105_0.5-0.6	SE187930.007	%	60 - 130%	75
	BH106_0.2-0.3	SE187930.008	%	60 - 130%	76
	BH107_0.5-0.6	SE187930.009	%	60 - 130%	70
		SE187930.009	%	60 - 130%	78
	BH108_0.1-0.2 BH109 0.2-0.3	SE187930.010			
			%	60 - 130%	75
	BH110_0.2-0.3	SE187930.012	%	60 - 130%	70
	BH111_0.5-0.6	SE187930.013	%	60 - 130%	/1
	BH112_0.1-0.2	SE187930.014	%	60 - 130%	81
	BH113_0.5-0.6	SE187930.015	%	60 - 130%	78
	BH114_0.1-0.2	SE187930.016	%	60 - 130%	73
	BH115_0.2-0.3	SE187930.017	%	60 - 130%	72
	BH116_0.2-0.3	SE187930.018	%	60 - 130%	79
	BH116_0.8-0.9	SE187930.019	%	60 - 130%	94
	BH117_0.1-0.2	SE187930.020	%	60 - 130%	102
	BH117_1.0-1.1	SE187930.021	%	60 - 130%	71
	BH117_1.9-2.0	SE187930.022	%	60 - 130%	101
	BH118M_0.2-0.3	SE187930.023	%	60 - 130%	111
	BH119_0.2-0.3	SE187930.024	%	60 - 130%	123
	BH119_1.0-1.1	SE187930.025	%	60 - 130%	116
	BH120_0.1-0.2	SE187930.026	%	60 - 130%	127

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Volatile Petroleum Hydrocarbons in Soil (continued)					E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	BH121_0.2-0.3	SE187930.028	%	60 - 130%	96
	BH121_1.4-1.5	SE187930.029	%	60 - 130%	75
	QD1	SE187930.030	%	60 - 130%	77
/olatile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH100_QR1	SE187930.031	%	40 - 130%	97
	BH100_QR1	SE187930.031	%	60 - 130%	108
d4-1,2-dichloroethane (Surrogate)				40 4000	110
d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	BH100_QR1	SE187930.031	%	40 - 130%	110

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB164495.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			м	ethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB164437.001	Mercury	mg/kg	0.05	<0.05
LB164438.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

C Pesticides in Soil	Devenuedar			od: ME-(AU)-[EN\
Cample Number	Parameter	Units	LOR	Result
164431.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	84
164432.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.1
	Endrin		0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.2	<0.2
		mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg		
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	76

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Chrysene

Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene

Dibenzo(ah)anthracene

d5-nitrobenzene (Surrogate)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Benzo(ghi)perylene

Total PAH (18)

Naphthalene

2-methylnaphthalene

Acenaphthylene

Phenanthrene

Anthracene

Pyrene

Chrysene

Fluoranthene

Benzo(a)anthracene

Acenaphthene

Fluorene

1-methylnaphthalene

OP Pesticides in Soil

P Pesticides in Soll					od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B164431.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	98	
		d14-p-terphenyl (Surrogate)	%	-	106
3164432.001		Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5	
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94
	·	d14-p-terphenyl (Surrogate)	%	-	106
H (Polynuclear Aroma	atic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AI
ample Number		Parameter	Units	LOR	Result
164431.001		Naphthalene	mg/kg	0.1	<0.1
104401.001		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene		0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
			mg/kg	0.1	
		Anthracene	mg/kg		<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1

LB164432.001

17/1/2019

Surrogates

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.8

94

98

106

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

< 0.1

<0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

%

%

mg/kg

0.1

0.1

0.1

0.1

0.1

0.8

-

-

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB164432.001	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	94
	2-fluorobiphenyl (Surrogate)	%	-	94
	d14-p-terphenyl (Surrogate)	%	-	106

PCBs in Soil

17/1/2019

PCBs in Soil				Metho	od: ME-(AU)-[EN\
Sample Number		Parameter	Units	LOR	Result
_B164431.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	84
B164432.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	76

Method: ME-(AU)-[ENV]AN040/AN320 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Sample Number LOR Parameter Units Result LB164435.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd mg/kg 0.3 < 0.3 Chromium, Cr 0.3 <0.3 mg/kg Copper, Cu 0.5 <0.5 mg/kg Nickel, Ni mg/kg 0.5 < 0.5 Lead, Pb <1 mg/kg 1 Zinc, Zn mg/kg 2 <2.0 LB164436.001 Arsenic, As mg/kg 1 1 Cadmium, Cd 0.3 <0.3 mg/kg 0.3 <0.3 Chromium, Cr mg/kg Copper, Cu mg/kg 0.5 < 0.5 Nickel, Ni 0.5 <0.5 mg/kg Lead, Pb <1 mg/kg 1 Zinc, Zn mg/kg 2 <2.0 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number LOR Result Parameter Units

	eriite		
Arsenic, As	μg/L	1	<1
Cadmium, Cd	μg/L	0.1	<0.1
Chromium, Cr	μg/L	1	<1
Copper, Cu	μg/L	1	<1
Lead, Pb	μg/L	1	<1
Nickel, Ni	μg/L	1	<1
Zinc, Zn	µg/L	5	<5
		Meth	nod: ME-(AU)-[ENV]AN403
	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	Arsenic, As μg/L Cadmium, Cd μg/L Chromium, Cr μg/L Copper, Cu μg/L Lead, Pb μg/L Nickel, Ni μg/L	Arsenic, As μg/L 1 Cadmium, Cd μg/L 0.1 Chromium, Cr μg/L 1 Copper, Cu μg/L 1 Lead, Pb μg/L 1 Nickel, Ni μg/L 1 Zinc, Zn μg/L 5

LOR

Units

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Somple Number		ued)		LOR	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB164431.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
D404400.004		TRH C10-C36 Total	mg/kg	110	<110
_B164432.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverable	e Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B164491.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
OC's in Soil				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B164428.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
104420.001	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	Tydrocarbons	Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.2	<0.2
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	92
	ounogates	d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	104
		Bromofluorobenzene (Surrogate)	%	_	92
	Totals	Total BTEX	mg/kg	0.6	<0.6
LB164430.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	nyarooarbono	Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	73
		d4-1,2-dichloroethane (Surrogate)	%	_	74
		d8-toluene (Surrogate)	%	_	91
		Bromofluorobenzene (Surrogate)	%	_	79
	Totals	Total BTEX	mg/kg	0.6	<0.6
/OCs in Water			5.5		
					od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B164551.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	104
		d4-1,2-dichloroethane (Surrogate)	%	-	103
		d8-toluene (Surrogate)	%	-	101
		Bromofluorobenzene (Surrogate)	%	-	92
olatile Petroleum Hydr	rocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B164428.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	92
	u	d4-1,2-dichloroethane (Surrogate)	%	-	99
			%		
		d8-toluene (Surrogate)	70	-	104

SE187930 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB164430.001	Surrogates	Dibromofluoromethane (Surrogate)	%	-	73
		d4-1,2-dichloroethane (Surrogate)	%	-	74
		d8-toluene (Surrogate)	%	-	91
Volatile Petroleum Hyd	drocarbons in Water			Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB164551.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	104
		d4-1,2-dichloroethane (Surrogate)	%	-	103
		d8-toluene (Surrogate)	%	-	101
		Bromofluorobenzene (Surrogate)	%	-	92

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Beta BHC

Delta BHC

o,p'-DDE

Heptachlor epoxide

Alpha Endosulfan

Gamma Chlordane

Alpha Chlordane

trans-Nonachlor

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	ury (dissolved) in Water							Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187951.001	LB164495.014	Mercury	μg/L	0.0001	<0.00005	0.00002	200	76
SE187960.007	LB164495.017	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil							Metho	od: ME-(AU)-	ENVJAN312
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187926.007	LB164438.023		Mercury	mg/kg	0.05	0.0175931677	70.0177264492	200	0
SE187930.010	LB164437.014		Mercury	mg/kg	0.05	<0.05	<0.05	167	0
SE187930.019	LB164437.024		Mercury	mg/kg	0.05	0.59	0.64	38	8
SE187930.029	LB164438.014		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
Moisture Content							Metho	od: ME-(AU)-	ENVJAN002
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187926.007	LB164434.021		% Moisture	%w/w	0.5	6.2135922330	9.2243186582	43	39
SE187930.010	LB164433.011		% Moisture	%w/w	0.5	16	16	36	5
SE187930.019	LB164433.021		% Moisture	%w/w	0.5	11	13	38	15
SE187930.029	LB164434.011		% Moisture	%w/w	0.5	19	17	36	11
OC Pesticides in So	bil						Metho	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187926.002	LB164432.027		Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Alpha BHC	mg/kg	0.1	0	0	200	0
			Lindane	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0
			Beta BHC	mg/kg	0.1	0	0	200	0
			Delta BHC	mg/kg	0.1	0	0	200	0
			Heptachlor epoxide	mg/kg	0.1	0	0	200	0
			o,p'-DDE	mg/kg	0.1	0	0	200	0
			Alpha Endosulfan	mg/kg	0.2	0	0	200	0
			Gamma Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Chlordane	mg/kg	0.1	0	0	200	0
			trans-Nonachlor	mg/kg	0.1	0	0	200	0
			p,p'-DDE	mg/kg	0.1	0	0	200	0
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
			o,p'-DDD	mg/kg	0.1	0	0	200	0
			o,p'-DDT	mg/kg	0.1	0	0	200	0
			Beta Endosulfan	mg/kg	0.2	0	0	200	0
			p,p'-DDD	mg/kg	0.1	0	0	200	0
			p,p'-DDT	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			Endrin Aldehyde	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	0
			Endrin Ketone	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
			Total CLP OC Pesticides	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.111	0.105	30	6
SE187926.007	LB164432.023		Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Alpha BHC	mg/kg	0.1	0	0	200	0
			Lindane	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0

0

0

0

0

0

0

0

0

0.1

0.1

0.1

0.1

0.2

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

200

200

200

200

200

200

200

200

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

C Pesticides in S	oil (continued)						Meth	od: ME-(AU)-	(ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187926.007	LB164432.023		p,p'-DDE	mg/kg	0.1	0	0	200	0
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
					0.2	0	0	200	0
			o,p'-DDD	mg/kg					
			o,p'-DDT	mg/kg	0.1	0	0	200	0
			Beta Endosulfan	mg/kg	0.2	0	0	200	0
			p,p'-DDD	mg/kg	0.1	0	0	200	0
			p,p'-DDT	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			Endrin Aldehyde	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	0
			Endrin Ketone	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
			Total CLP OC Pesticides	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	_	0.107	0.118	30	10
SE187930.014	LB164431.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT		0.1	<0.1	<0.1	200	0
				mg/kg				200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2		
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.11	30	11
Pesticides in S	oil						Moth	od: ME-(AU)-	
					1.000	0.1.1.5			
Priginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
E187926.007	LB164432.023		Dichlorvos	mg/kg	0.5	0.02	0.02	200	0
			Dimethoate	mg/kg	0.5	0	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	0.04	0.03	200	0
			Fenitrothion	mg/kg	0.2	0	0	200	0
			Malathion	mg/kg	0.2	0	0.01	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0.02	0.01	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0.02	0.04	200	0
			Bromophos Ethyl	mg/kg	0.2	0.02	0.04	200	0
			Methidathion	mg/kg	0.5	0	0	200	0
			Ethion	mg/kg	0.2	0	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	0	0	200	0
			Total OP Pesticides*	mg/kg	1.7	0	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

	oil (continued)						Meth	od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE187926.007	LB164432.023	Surrogates	d14-p-terphenyl (Surrogate)	mg/kg	-	0.52	0.47	30	10
SE187930.010	LB164431.014	Gunogatoo	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
021010001010	LBTOTTOTTOTT		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
		Ganogatoo	d14-p-terphenyl (Surrogate)	mg/kg		0.6	0.6	30	0
SE187930.019	LB164431.024		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
02107000.010	20104401.024		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)		0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg mg/kg	0.3	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)		0.2	<0.2	<0.2	200	0
				mg/kg					0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg		<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5				
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		-	Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
SE187930.028	LB164432.025		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
PAH (Polynuclear /	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)	-[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD %
			Naphthalene	mg/kg	0.1	0	0	200	0
SE187926.007	LB164432.023				0.1	0	0	200	0
	LB164432.023		2-methylnaphthalene	mg/kg					
	LB164432.023		2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg	0.1	0	0	200	0
	LB164432.023		1-methylnaphthalene	mg/kg		0	0 0.01		0
	LB164432.023			mg/kg mg/kg	0.1			200	
	LB164432.023		1-methylnaphthalene Acenaphthylene	mg/kg mg/kg mg/kg	0.1 0.1	0.01	0.01	200 200	0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	0.01 0 0	0.01 0 0	200 200 200 200	0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	0.01 0 0 0.01	0.01 0 0 0.01	200 200 200 200 200	0 0 0 0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.01 0 0.01 0.01	0.01 0 0.01 0.01	200 200 200 200 200 200 200	0 0 0 0 0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.01 0 0.01 0.01 0.01	0.01 0 0.01 0.01 0.01	200 200 200 200 200 200 200 200	0 0 0 0 0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.01 0 0.01 0.01 0.01 0.01 0.02	0.01 0 0.01 0.01 0.01 0.01 0.01	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.01 0 0.01 0.01 0.01 0.02 0.01	0.01 0 0.01 0.01 0.01 0.01 0.01 0.01	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.01 0 0.01 0.01 0.01 0.01 0.02 0.01 0.01	0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0.	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b&j)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.01 0 0.01 0.01 0.01 0.01 0.02 0.01 0.01	0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0.	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0
	LB164432.023		1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.01 0 0.01 0.01 0.01 0.01 0.02 0.01 0.01	0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0.	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

darlar at	Durit		D		1.00	0	During	0	-
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
187926.007	LB164432.023		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.01	0.01	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	0	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.01	0.01	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>0</td><td>0</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	0	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>0.242</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	0.242	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>0.121</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	0.121	0.121	175	0
			Total PAH (18)	mg/kg	0.8	0	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	_	0.53	0.47	30	12
			2-fluorobiphenyl (Surrogate)	mg/kg	_	0.49	0.45	30	9
			d14-p-terphenyl (Surrogate)	mg/kg		0.52	0.47	30	10
187930.010	LB164431.014		Naphthalene		0.1	<0.1	<0.1	200	0
187930.010	LD104431.014		· · ·	mg/kg					
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	C
			Benzo(a)anthracene	mg/kg					
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	(
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	(
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	C
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	(
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	(
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	(
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>(</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	(
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>(</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	(
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>(</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	(
			Total PAH (18)		0.2	<0.8	<0.8	200	
		0		mg/kg	- 0.8				
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.5	0.5	30	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.6	30	
187930.019	LB164431.024		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene			<0.1	<0.1		
				mg/kg	0.1			200	
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
							<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1			
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	(
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	(
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>(</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	(
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td></td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td></td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	
		Canogatos	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.5	30	
				iiig/kg	-	0.0	0.0	30	
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5	30	:

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187930.028	LB164432.025		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	0.1	0.1	101	0
			Pyrene	mg/kg	0.1	0.1	0.1	104	7
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	173	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	184	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	197	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
Bs in Soil							Meth	od: ME-(AU)-	
	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD ^o

CBS IN SOIL							Men	iod: ME-(AU)-	[[]]]
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187926.002	LB164432.025		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.111	0.105	30	6
SE187926.007	LB164432.023		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.107	0.118	30	10
SE187930.014	LB164431.026		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	11

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Elements in Soil/Waste S			Unito	LOR		Method: ME-(
Original	Duplicate		Parameter	Units		-	Duplicate		
SE187926.007	LB164436.023		Arsenic, As	mg/kg	1	10.138671347		40	8
			Cadmium, Cd	mg/kg	0.3		0.0695382122	200	0
			Chromium, Cr	mg/kg	0.3	15.822261229	34.2924205599	33	10
			Copper, Cu	mg/kg	0.5	11.988387793	30.5095418129	34	13
			Nickel, Ni	mg/kg	0.5	7.4915834008	6.7498424700	37	10
			Lead, Pb	mg/kg	1	23.962867944	36.7772526780	35	35 (
			Zinc, Zn	mg/kg	2	\$1.746106760	82.5207039337	35	25
SE187930.010	LB164435.014		Arsenic, As	mg/kg	1	5	4	51	10
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	30	33	32	8
			Copper, Cu	mg/kg	0.5	2.4	3.5	47	38
			Nickel, Ni	mg/kg	0.5	1.4	1.7	62	18
			Lead, Pb	mg/kg	1	12	11	39	10
			Zinc, Zn	mg/kg	2	6.9	7.6	58	10
E 4 8 7 0 2 0 4 0	1 0464425 024				1	7		42	40
E187930.019	LB164435.024		Arsenic, As	mg/kg			10		
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	182	0
			Chromium, Cr	mg/kg	0.3	3.8	4.8	42	23
			Copper, Cu	mg/kg	0.5	6.8	5.2	38	27
			Nickel, Ni	mg/kg	0.5	1.1	1.3	71	20
			Lead, Pb	mg/kg	1	12	16	37	29
			Zinc, Zn	mg/kg	2	20	28	38	32
E187930.029	LB164436.014		Arsenic, As	mg/kg	1	5	6	47	15
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	9.7	9.0	35	8
			Copper, Cu	mg/kg	0.5	6.5	6.0	38	8
							<0.5	161	0
			Nickel, Ni	mg/kg	0.5	<0.5			
			Lead, Pb	mg/kg	1	11	11	39	0
			Zinc, Zn	mg/kg	2	3.1	3.0	95	4
race Metals (Dis	solved) in Water by ICPMS	3					Metho	d: ME-(AU)	-[ENV]A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E188008.001	LB164585.013		Arsenic, As	µg/L	1	0.2738614	0.26758989	200	0
			Cadmium, Cd	μg/L	0.1		0.10674826	103	13
			Chromium, Cr	μg/L	1	0.0573268	0.06370259	200	0
			Copper, Cu	μg/L	1		0.14654145	200	0
			Lead, Pb	μg/L	1		-0.01206547	200	0
			Nickel, Ni	μg/L	1	0.11788055	0.11826589	200	0
			Zinc, Zn	µg/L	5	19.80845168	19.78928279	40	0
RH (Total Recov	erable Hydrocarbons) in S	ioil					Metho	d: ME-(AU)	HENVIA
•	<u> </u>	i	Parameter	Units		Original		<mark>d: ME-(AU)</mark> Criteria %	
Driginal	Duplicate	ioil	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
Driginal	<u> </u>	šoil	TRH C10-C14	mg/kg	20	0	Duplicate 0	Criteria % 200	RPI 0
Driginal	Duplicate	Soil	TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 45	0	Duplicate 0 0	Criteria % 200 200	RPC 0 0
Priginal	Duplicate	3oil	TRH C10-C14	mg/kg	20	0	Duplicate 0	Criteria % 200	RPC 0 0
original	Duplicate	Soil	TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 45	0	Duplicate 0 0	Criteria % 200 200	
original	Duplicate	Soil	TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg	20 45 45	0 0 0 0	Duplicate 0 0 0	Criteria % 200 200 200	
original	Duplicate	<u>ŝoil</u>	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg	20 45 45 100	0 0 0 0	Duplicate 0 0 0 0	Criteria % 200 200 200 200	
Priginal	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210	0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200	
Priginal	Duplicate LB164432.023	Soll	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25	0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200	
Priginal	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25	0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	
riginal	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90	0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	
riginal E187926.007	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120	0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 20	
riginal E187926.007	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 20	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20	Criteria % 200 200 200 200 200 200 200 20	
riginal E187926.007	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120	0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 20	
riginal E187926.007	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 20	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20	Criteria % 200 200 200 200 200 200 200 20	
briginal E187926.007	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg	20 45 45 100 210 25 25 90 120 20 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 <45	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 45 445	Criteria % 200 200 200 200 200 200 200 200 200 20	
Driginal E187926.007	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C38 Total TRH C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg	20 45 100 210 25 25 90 120 20 45 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 <45 <45	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 445 <45	Criteria % 200 200 200 200 200 200 200 200 200 20	
Driginal E187926.007	Duplicate LB164432.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4) TRH >C10-C14 TRH C10-C14 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg	20 45 45 100 110 25 25 25 90 120 20 45 45 100 110	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 2	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <100	Criteria % 200 200 200 200 200 200 200 200 200 20	
Driginal E187926.007	Duplicate LB164432.023 T LB164431.014	IRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16-C34 (F3) TRH >C10-C14 TRH >C10-C14 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands)	mg/kg	20 45 45 100 210 25 25 90 120 45 45 100 110 210	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 410 <110	Criteria % 200 200 200 200 200 200 200 200 200 20	
Driginal E187926.007	Duplicate LB164432.023 T LB164431.014		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4) TRH >C15-C28 TRH C15-C28 TRH C37-C40 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH C10-C40 Total (F bands) TRH C10-C40 Total (F bands)	mg/kg	20 45 100 110 25 25 90 120 20 45 45 45 100 110 210 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 <45	Criteria % 200 200 200 200 200 200 200 200 200 20	
RH (Total Recov Driginal SE187926.007	Duplicate LB164432.023 T LB164431.014	IRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH >C15-C28 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16	mg/kg	20 45 100 110 25 25 90 120 20 45 45 45 100 110 210 25 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPE 0
Driginal E187926.007	Duplicate LB164432.023 T LB164431.014	IRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C46 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C14 TRH C15-C28 TRH C10-C14 TRH C15-C28 TRH C10-C14 TRH C15-C28 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg	20 45 100 210 25 25 90 120 20 45 45 100 110 210 25 25 90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 410 <100	Criteria % 200 200 200 200 200 200 200 200 200 20	RPE 0
briginal E187926.007	Duplicate LB164432.023 T LB164431.014	IRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH >C15-C28 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C10-C36 Total TRH C10-C40 Total (F bands) TRH C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16	mg/kg	20 45 100 110 25 25 90 120 20 45 45 45 100 110 210 25 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <20	Criteria % 200 200 200 200 200 200 200 200 200 20	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RH (Total Recov	orable riyurooarboria	, (Meur		[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE187930.019	LB164431.024		TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
E187930.028	LB164432.025		TRH C10-C14	mg/kg	20	<20	<20	200	0
5E107930.020	LB104432.025		TRH C10-C14		45	<45	<20	200	0
				mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg					
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
RH (Total Recov	erable Hydrocarbons) in Water					Meth	od: ME-(AU)-	(ENV)A
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
-							0		
E187912.009	LB164491.023		TRH C10-C14	µg/L	50	<50		200	0
			TRH C15-C28	μg/L	200	<200	0	200	0
			TRH C29-C36	μg/L	200	<200	0	200	0
			TRH C37-C40	μg/L	200	<200	0	200	0
			TRH C10-C36	μg/L	450	<450	0	200	0
			TRH C10-C40	μg/L	650	<650	0	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	0	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	0	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	0	200	0
OC's in Soil							Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE187930.010	LB164428.014					Original	<0.1	200	0
SE167930.010	LD104420.014					-0.1			
		Monocyclic	Benzene	mg/kg	0.1	<0.1			
		Monocyclic Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Toluene Ethylbenzene	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	200 200	0
			Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg	0.1 0.1 0.2	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	200 200 200	0
		Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1	<0.1 <0.1 <0.2 <0.1	<0.1 <0.1 <0.2 <0.1	200 200 200 200	0 0 0
			Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg	0.1 0.1 0.2	<0.1 <0.1 <0.2 <0.1 <0.1	<0.1 <0.1 <0.2 <0.1 <0.1	200 200 200 200 200 200	0 0 0 0
		Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1	<0.1 <0.1 <0.2 <0.1	<0.1 <0.1 <0.2 <0.1	200 200 200 200	0 0 0
		Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1	<0.1 <0.1 <0.2 <0.1 <0.1	200 200 200 200 200 200	0 0 0 0
		Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 -	<0.1 <0.1 <0.2 <0.1 <0.1 3.9	<0.1 <0.1 <0.2 <0.1 <0.1 <0.1 3.9	200 200 200 200 200 200 50	0 0 0
		Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 -	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9	<0.1 <0.1 <0.2 <0.1 <0.1 <0.1 3.9 3.9	200 200 200 200 200 50 50	0 0 0 0 0 1
		Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - -	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3	200 200 200 200 200 50 50 50	0 0 0 0 0 1 4
		Aromatic Polycyclic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 - - -	<0.1 <0.2 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9	200 200 200 200 50 50 50 50 50	0 0 0 0 1 4 3
SE187930.019	LB164428.024	Aromatic Polycyclic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.2 0.1 0.1 - - - - 0.3	<0.1 <0.2 <0.1 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 4.3 3.9 <0.3	200 200 200 200 50 50 50 50 50 200	0 0 0 0 0 1 1 4 3 0 0 0
5E187930.019		Aromatic Polycyclic Surrogates Totals	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX	mg/kg	0.1 0.2 0.1 0.1 - - - 0.3 0.6	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 4.3 3.9 <0.3 <0.6	200 200 200 200 50 50 50 50 50 200 200	0 0 0 0 0 0 1 4 3 0 0 0 0 0
E187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene	mg/kg	0.1 0.2 0.1 - - - 0.3 0.6 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 4.3 3.9 <0.3 <0.6 <0.1	200 200 200 50 50 50 50 50 200 200 200	0 0 0 0 0 0 1 4 3 0 0 0 0 0 0 0
E187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene	mg/kg	0.1 0.1 0.2 0.1 - - 0.3 0.6 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 <0.3 <0.6 <0.1 <0.1 <0.1	200 200 200 50 50 50 50 50 200 200 200 2	0 0 0 0 1 4 3 0 0 0 0 0 0 0 0 0
E187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Toluene Ethylbenzene m/p-xylene	mg/kg	0.1 0.1 0.2 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.2	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2	200 200 200 50 50 50 50 50 200 200 200 2	0 0 0 0 0 1 4 3 3 0 0 0 0 0 0 0 0 0 0 0
E187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Toluene Ethylbenzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - 0.3 0.6 0.1 0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1	200 200 200 50 50 50 50 200 200 200 200	0 0 0 0 0 1 4 4 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg	0.1 0.1 0.2 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.2	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	<0.1	200 200 200 50 50 50 50 200 200 200 200	0 0 0 0 1 1 4 3 0
SE187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 - - 0.3 0.6 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2	<0.1	200 200 200 50 50 50 50 200 200 200 200	0 0 0 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - - - - - - - - - - -	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1	<0.1	200 200 200 50 50 50 50 200 200 200 200	0 0 0 0 1 1 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - - - - - - - - - - -	<0.1 <0.1 <0.2 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 0 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	<0.1	200 200 200 50 50 50 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Bibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) B-toluene (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.2 0.1 0.1 - - - - - - - - - - - - -	<0.1 <0.1 <0.2 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.1	200 200 200 50 50 50 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE187930.019		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluoromethane (Surrogate)	mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - - - - - - - - - - -	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 50 50 50 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	LB164428.024	Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals Totals	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Total Xylenes Total Xylenes Total STEX	mg/kg	0.1 0.1 0.2 0.1 0.1 - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 50 50 50 50 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total STEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene O-xylene O-xylene O-toromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Brotmofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene	mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - - - - - - - - - - -	<0.1	 <0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 <0.3 <0.6 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 	200 200 200 50 50 50 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE187930.019 SE187930.029	LB164428.024	Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic Surrogates Totals Totals	Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Total Xylenes Total Xylenes Total STEX	mg/kg	0.1 0.1 0.2 0.1 0.1 - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.4 3.8 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.2 <0.1 <0.1 3.9 3.9 4.3 3.9 <0.3 <0.6 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 50 50 50 50 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
SE187930.029	LB164430.014	Monocyclic	m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	C
52107000.020	20104400.014	Aromatic	o-xylene	mg/kg	0.1	<0.1	<0.1	200	C
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	C
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.8	50	
		Currogatoo	d4-1,2-dichloroethane (Surrogate)	mg/kg		3.9	3.9	50	
			d8-toluene (Surrogate)	mg/kg	-	4.0	3.9	50	
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	3.9	50	
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	
		1 otdio	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	
					0.0	-0.0			
OCs in Water						_		od: ME-(AU)-	[ENV]
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
E187930.031	LB164551.026	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	
		Aromatic	Toluene	µg/L	0.5	1.0	1.0	78	
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	
			m/p-xylene	µg/L	1	<1	<1	200	
			o-xylene	µg/L	0.5	<0.5	<0.5	200	
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	<0.5	200	
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.5	4.8	30	
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.4	4.8	30	
			d8-toluene (Surrogate)	µg/L	-	5.5	5.2	30	
			Bromofluorobenzene (Surrogate)	µg/L	-	4.9	5.0	30	
E187952.001	LB164551.022	Monocyclic	Benzene	µg/L	0.5	<0.5	0.03	200	
		Aromatic	Toluene	µg/L	0.5	<0.5	0.09	200	
			Ethylbenzene	µg/L	0.5	<0.5	0.02	200	
			m/p-xylene	μg/L	1	<1	0.08	200	
			o-xylene	μg/L	0.5	<0.5	0	200	
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.04	200	
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L		4.8	4.66	30	
		Sunogutos	d4-1,2-dichloroethane (Surrogate)	μg/L		4.6	4.96	30	
			d8-toluene (Surrogate)	μg/L	-	5.2	4.94	30	
			Bromofluorobenzene (Surrogate)	μg/L	-	5.1	4.24	30	
eletile Detreleum	Liveragerbang in Coi			F0-					
	Hydrocarbons in Soi		-					od: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		RP
E187930.010	LB164428.014		TRH C6-C10	mg/kg	25	<25	<25	200	
			TRH C6-C9	mg/kg	20	<20	<20	200	
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.9	30	
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.9	3.9	30	
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.3	30	
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	3.9	30	
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	
			TRH C6-C10		25	<25	<25	200	
E187930.019	LB164428.024			mg/kg					
E187930.019	LB164428.024		TRH C6-C9	mg/kg	20	<20	<20	200	
E187930.019	LB164428.024	Surrogates				<20 4.7	<20 4.6	30	
E187930.019	LB164428.024	Surrogates	TRH C6-C9	mg/kg mg/kg					
E187930.019	LB164428.024	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg	20	4.7	4.6	30	
SE187930.019	LB164428.024	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg	20 - -	4.7 4.9	4.6 4.9	30 30	
SE187930.019	LB164428.024	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	20 - - -	4.7 4.9 5.0	4.6 4.9 5.3	30 30 30	
E187930.019	LB164428.024		TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 - - - - 0.1	4.7 4.9 5.0 3.9 <0.1	4.6 4.9 5.3 3.8 <0.1	30 30 30 30 200	
			TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 - - - - 0.1 25	4.7 4.9 5.0 3.9 <0.1 <25	4.6 4.9 5.3 3.8 <0.1 <25	30 30 30 30 200 200	
	LB164428.024		TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 - - 0.1 25 25	4.7 4.9 5.0 3.9 <0.1 <25 <25	4.6 4.9 5.3 3.8 <0.1 <25 <25	30 30 30 200 200 200	
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 - - - - 0.1 25	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20	4.6 4.9 5.3 3.8 <0.1 <25 <25 <20	30 30 30 200 200 200 200 200	
SE187930.019 SE187930.029			TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 - - 0.1 25 25 20 -	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20 3.8	4.6 4.9 5.3 3.8 <0.1 <25 <25 <25 <20 3.8	30 30 30 200 200 200 200 200 30	
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 - - 0.1 25 25 20 - -	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20 3.8 3.9	4.6 4.9 5.3 3.8 <0.1 <25 <25 <20 3.8 3.9	30 30 30 200 200 200 200 200 30 30	
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg	20 - - 0.1 25 25 20 - - -	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20 3.8 3.9 4.0	4.6 4.9 5.3 3.8 <0.1 <25 <25 <20 3.8 3.9 3.9 3.9	30 30 30 200 200 200 200 30 30 30 30	
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 Benzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg	20 - - 0.1 25 25 20 - - - -	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20 3.8 3.9 4.0 3.8	4.6 4.9 5.3 3.8 <0.1 <25 <25 <20 3.8 3.9 3.9 3.9 3.9	30 30 30 200 200 200 200 30 30 30 30 30	
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene (F0)	mg/kg mg/kg	20 - - 0.1 25 25 20 - - - - - 0.1	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20 3.8 3.9 4.0 3.8 <0.1	4.6 4.9 5.3 3.8 <0.1 <25 <25 <20 3.8 3.9 3.9 3.9 3.9 <0.1	30 30 30 200 200 200 200 30 30 30 30 30 200	
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 Benzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg	20 - - 0.1 25 25 20 - - - -	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20 3.8 3.9 4.0 3.8	4.6 4.9 5.3 3.8 <0.1 <25 <25 <20 3.8 3.9 3.9 3.9 3.9	30 30 30 200 200 200 200 30 30 30 30 30	
E187930.029		VPH F Bands Surrogates VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene (F0)	mg/kg mg/kg	20 - - 0.1 25 25 20 - - - - - 0.1	4.7 4.9 5.0 3.9 <0.1 <25 <25 <20 3.8 3.9 4.0 3.8 <0.1	4.6 4.9 5.3 3.8 <0.1 <25 <25 <20 3.8 3.9 3.9 3.9 3.9 <0.1 <25	30 30 30 200 200 200 200 30 30 30 30 30 200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE187930.031	LB164551.026		TRH C6-C10	μg/L	50	<50	<50	200	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.5	4.8	30	14
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.4	4.8	30	11
			d8-toluene (Surrogate)	µg/L	-	5.5	5.2	30	4
			Bromofluorobenzene (Surrogate)	μg/L	-	4.9	5.0	30	4
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	200	0
SE187933.002	LB164551.023		TRH C6-C10	μg/L	50	<50	<50	200	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.6	4.8	30	16
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.7	5.1	30	10
			d8-toluene (Surrogate)	µg/L	-	5.6	5.6	30	0
			Bromofluorobenzene (Surrogate)	µg/L	-	4.8	5.6	30	14
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0
SE187952.001	LB164551.022		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.8	4.66	30	5
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.6	4.96	30	6
			d8-toluene (Surrogate)	µg/L	-	5.2	4.94	30	13
			Bromofluorobenzene (Surrogate)	µg/L	-	5.1	4.24	30	10
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0.03	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	-0.22	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN312 Mercury in Soil Sample Numb Expected Criteria % Recovery % Parameter Units LOR Result LB164437.002 0.05 70 - 130 Mercury mg/kg 0.21 0.2 103 LB164438.002 Mercury mg/kg 0.05 0.21 0.2 70 - 130 107

C Pesticides in So	oil					N	Nethod: ME-(Al	J)-[ENV]AN4:
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
B164431.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	91
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	77
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	76
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	79
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	76
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	77
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	84
B164432.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	88
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	82
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	80
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	76
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	79
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	84
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.15	40 - 130	77
P Pesticides in So	oil					N	Method: ME-(Al	J)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B164431.002		Dichlorvos	mg/kg	0.5	1.7	2	60 - 140	87
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	95
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	98
		Ethion	mg/kg	0.2	2.0	2	60 - 140	99
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
B164432.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	92
		Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	99
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	102
		Ethion	mg/kg	0.2	2.2	2	60 - 140	110
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB164431.002		Naphthalene	mg/kg	0.1	4.5	4	60 - 140	113
		Acenaphthylene	mg/kg	0.1	4.7	4	60 - 140	117
		Acenaphthene	mg/kg	0.1	4.7	4	60 - 140	118
		Phenanthrene	mg/kg	0.1	4.8	4	60 - 140	120
		Anthracene	mg/kg	0.1	4.5	4	60 - 140	113
		Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	113
		Pyrene	mg/kg	0.1	4.8	4	60 - 140	119
_		Benzo(a)pyrene	mg/kg	0.1	4.5	4	60 - 140	112
S	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
LB164432.002		Naphthalene	mg/kg	0.1	4.5	4	60 - 140	113
		Acenaphthylene	mg/kg	0.1	4.7	4	60 - 140	117
		Acenaphthene	mg/kg	0.1	4.7	4	60 - 140	116
		Phenanthrene	mg/kg	0.1	4.8	4	60 - 140	120
		Anthracene	mg/kg	0.1	4.5	4	60 - 140	113
		Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	113
		Pyrene	mg/kg	0.1	4.7	4	60 - 140	119
-		Benzo(a)pyrene	mg/kg	0.1	4.6	4	60 - 140	114
S	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100

PCBs in Soll Sample Numbe

Parameter

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN420

PCBs in Soil (continued) Method: ME-(AU)-[ENV						U)-[ENV]AN420	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB164431.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	90
LB164432.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	87

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Sample Numbe	r	Parameter		Units	LOR	Result	Expected	Criteria %	
_B164435.002		Arsenic, As	m	g/kg	1	320	336.32	79 - 120	95
		Cadmium, Cd		g/kg	0.3	420	416.6	69 - 131	101
		Chromium, Cr		g/kg	0.3	34	35.2	80 - 120	96
		Copper, Cu		g/kg	0.5	310	370.46	80 - 120	82
		Nickel, Ni	m	g/kg	0.5	170	210.88	79 - 120	80
		Lead, Pb	m	g/kg	1	89	107.87	79 - 120	82
		Zinc, Zn	m	g/kg	2	270	301.27	80 - 121	89
B164436.002		Arsenic, As	m	g/kg	1	350	336.32	79 - 120	103
		Cadmium, Cd	m	g/kg	0.3	400	416.6	69 - 131	97
		Chromium, Cr	m	g/kg	0.3	41	35.2	80 - 120	117
		Copper, Cu	m	g/kg	0.5	320	370.46	80 - 120	86
		Nickel, Ni		g/kg	0.5	180	210.88	79 - 120	85
		Lead, Pb		g/kg	1	91	107.87	79 - 120	84
		Zinc, Zn	m	g/kg	2	280	301.27	80 - 121	94
race Metals (Dis	solved) in Water by	ICPMS					N	lethod: ME-(Al	J)-[ENV]AN
Sample Numbe	r	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery
B164585.002		Arsenic, As		g/L	1	20	20	80 - 120	98
LB104383.002		Cadmium, Cd		ig/L	0.1	20	20	80 - 120	103
		Chromium, Cr		ig/L	1	22	20	80 - 120	109
		Copper, Cu		ig/L	1	22	20	80 - 120	110
		Lead, Pb		ig/L	1	21	20	80 - 120	105
		Nickel, Ni		ig/L	1	22	20	80 - 120	108
		Zinc, Zn		ig/L	5	21	20	80 - 120	100
			4	9/1	0	21			
RH (Total Recov								Andhands MAT /AL	
	verable Hydrocarbor							lethod: ME-(Al	
Sample Numbe	-	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery
Sample Numbe	-	Parameter TRH C10-C14		Units g/kg	20	44	Expected 40	Criteria % 60 - 140	Recovery 110
Sample Numbe	-	Parameter TRH C10-C14 TRH C15-C28	m		20 45	44 46	Expected 40 40	Criteria % 60 - 140 60 - 140	Recovery 110 115
Sample Numbe	r	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	m	g/kg	20 45 45	44 46 <45	Expected 40 40 40	Criteria % 60 - 140 60 - 140 60 - 140	Recovery 110 115 93
Sample Numbe	-	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16		g/kg g/kg	20 45 45 25	44 46 <45 44	Expected 40 40 40 40 40	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110
Sample Numbe	r	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	m m m m	g/kg g/kg g/kg	20 45 45	44 46 <45	Expected 40 40 40	Criteria % 60 - 140 60 - 140 60 - 140	Recovery 110 115 93
Sample Numbe	r	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16	៣ ៣ ៣ ៣ ៣ ៣	g/kg g/kg g/kg g/kg	20 45 45 25 90 120	44 46 <45 44 <90 <120	Expected 40 40 40 40 40 40 20	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95
Sample Numbe LB164431.002	r	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3)	m m m m m m	g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20	44 46 <45 44 <90	Expected 40 40 40 40 40 20 40	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108
Sample Numbe LB164431.002 LB164432.002	r	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4)	m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg	20 45 45 25 90 120	44 46 <45 44 <90 <120	Expected 40 40 40 40 40 40 20	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95
Sample Numbe LB164431.002	r	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20	44 46 <45 44 <90 <120 38	Expected 40 40 40 40 40 20 40	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95
Sample Numbe LB164431.002	r	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	m m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45	44 46 <45 44 <90 <120 38 <45	Expected 40 40 40 40 40 20 40 40 40	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95 95
Sample Numbe	r TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36	m m m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45	44 46 <45 44 <90 <120 38 <45 <45 <45	Expected 40 40 40 40 20 40 40 40 40	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95 98 98 95
Sample Numbe LB164431.002	r TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C15-C28 TRH C29-C36 TRH >C10-C16	m m m m m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25	44 46 <45 44 <90 <120 38 <45 <45 39	Expected 40 40 40 20 40 40 40 40 40 40 40 40	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95 98 95 98 98
Sample Numbe .B164431.002 .B164432.002	r TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH >C10-C16	m m m m m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90	44 46 <45 44 <90 <120 38 <45 <45 <45 39 <90	Expected 40 40 40 20 40 40 40 40 40 40 40 20 20	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95 98 95 98 95 98 95 100
Engle Numbe Bi64431.002 Bi64432.002 RH (Total Recov	TRH F Bands TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C10 TRH >C10-C10 TRH >C10-C10 TRH >C10-C10 TRH >C10-C10	m m m m m m m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120	Expected 40 40 40 20 40 40 40 40 40 40 40 40 20 	Criteria % 60 - 140 60 -	Recovery 110 115 93 110 108 95 98 95 98 95 100 JO,-ENVJAN
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe	TRH F Bands TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH >C10-C16 TRH >C10-C16 <	m m m m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120 Result	Expected 40 40 40 40 20 40 40 40 40 40 40 20 K Expected	Criteria % 60 - 140	Recovery 110 115 93 110 108 95 98 95 98 95 100 J)-[ENV]AN Recovery
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe	TRH F Bands TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C14	m m m m m m m m m m m m m m	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120 Result 990	Expected 40 40 40 40 20 40 40 40 40 40 40 20 K Expected 1200	Criteria % 60 - 140 60 - 140 Kethod: ME-(AU Criteria % 60 - 140	Recovery 110 115 93 110 108 95 98 95 98 95 100 ↓ J-{ENVJAN Recovery 82
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe	TRH F Bands TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH >C10-C14 TRH >C10-C14 TRH C10-C14 TRH C15-C28 TRH C10-C14 TRH >C10-C16 TRH >C10-C14 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C15-C28	۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120 LOR 50 200	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120 Result 990 1200	Expected 40 40 40 40 20 40 40 40 40 40 40 20 K Expected 1200 1200	Criteria % 60 - 140 60 - 140 for the constant for the constant for the constant for the constant for the constant for the con	Recovery 110 115 93 110 108 95 98 95 98 95 100 ↓ J→[ENV]AN Recovery 82 96
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe	r TRH F Bands TRH F Bands verable Hydrocarbor r	Parameter TRH C10-C14 TRH C15-C28 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH >C10-C14 TRH >C10-C14 TRH >C10-C14 TRH C10-C14 TRH C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C29-C36 TRH C29-C36	۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120 LOR 50 200 200	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120 Result 990 1200 1300	Expected 40 40 40 40 20 40 40 40 40 40 40 20 K Expected 1200 1200	Criteria % 60 - 140 60 - 140 Criteria % 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95 98 95 98 95 100 J)-[ENV]AN Recovery 82 96 112
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe	TRH F Bands TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH 29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH >C16-C34 (F3) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH >C10-C16 TRH >C10-C16	۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120 LOR 50 200 200 60	44 46 <45 44 <90 <120 38 <45 <45 <45 39 <90 <120 Result 990 1200 1300 1100	Expected 40 40 40 20 40 40 40 40 40 40 20 K Expected 1200 1200 1200	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 98 95 98 95 100 J)-[ENV]AN Recovery 82 96 112 90
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe	r TRH F Bands TRH F Bands verable Hydrocarbor r	Parameter TRH C10-C14 TRH C15-C28 TRH >20-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C16 TRH >C10-C16	۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۲ ۲ ۲ ۲ ۲	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120 LOR 50 200 200 200 60 500	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120 Result 990 1200 1300 1100 1300	Expected 40 40 40 40 20 40 40 40 40 40 40 20 K Expected 1200 1200 1200 1200	Criteria % 60 - 140 60 -	Recovery 110 115 93 110 108 95 98 95 98 95 100 U)-[ENVJAN Recovery 82 96 112 90 109
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe B164491.002	r TRH F Bands TRH F Bands verable Hydrocarbor r	Parameter TRH C10-C14 TRH C15-C28 TRH 29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH >C16-C34 (F3) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH >C10-C16 TRH >C10-C16	۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۲ ۲ ۲ ۲ ۲	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120 LOR 50 200 200 60	44 46 <45 44 <90 <120 38 <45 <45 <45 39 <90 <120 Result 990 1200 1300 1100	Expected 40 40 40 20 40 40 40 40 40 40 40 20 K Expected 1200 1200 1200 600	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95 98 95 100 J)-[ENV]AN Recovery 82 96 112 90 109 111
Sample Numbe B164431.002 B164432.002 RH (Total Recov Sample Numbe B164491.002	r TRH F Bands TRH F Bands verable Hydrocarbor r	Parameter TRH C10-C14 TRH C15-C28 TRH >20-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C16 TRH >C10-C16	۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۲ ۲ ۲ ۲ ۲	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120 LOR 50 200 200 200 60 500	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120 Result 990 1200 1300 1100 1300	Expected 40 40 40 20 40 40 40 40 40 40 40 20 K Expected 1200 1200 1200 600	Criteria % 60 - 140 60 -	Recovery 110 115 93 110 108 95 95 98 95 100 J)-[ENV]AN Recovery 82 96 112 90 109 111
Sample Numbe .B164431.002 .B164432.002	r TRH F Bands TRH F Bands rerable Hydrocarbon r TRH F Bands	Parameter TRH C10-C14 TRH C15-C28 TRH >20-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C16 TRH >C10-C16	۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۲ ۲ ۲ ۲	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	20 45 25 90 120 20 45 45 25 90 120 120 LOR 50 200 200 200 60 500	44 46 <45 44 <90 <120 38 <45 <45 39 <90 <120 Result 990 1200 1300 1100 1300	Expected 40 40 40 20 40 40 40 40 40 40 40 20 K Expected 1200 1200 1200 600	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 110 115 93 110 108 95 95 98 95 100 J)-[ENV]AN Recovery 82 96 112 90 109 111

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.1

0.2

0.1

1.9

2.4

4.9

2.4

3.8

2.9

2.9

5.8

2.9

5

60 - 140

60 - 140

60 - 140

60 - 140

60 - 140

Surrogates

Aromatic

Toluene

Ethylbenzene

Dibromofluoromethane (Surrogate)

m/p-xylene

o-xylene

64

83

85

81

75

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/OC's in Soll (cor Sample Numbe		Parameter	Units	LOR	Result	Expected	fethod: ME-(AU Criteria %	<u> </u>
LB164428.002								Recovery 80
_B164428.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	5	60 - 140	
		d8-toluene (Surrogate)	mg/kg	-	4.0		60 - 140	80
B404400.000		Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	5	60 - 140	90
_B164430.002	Monocyclic	Benzene	mg/kg	0.1	2.2	2.9	60 - 140	76
	Aromatic	Toluene Ethylbenzene	mg/kg	0.1	2.2	2.9 2.9	60 - 140	77
			mg/kg	0.1	4.7	5.8	60 - 140	81
		m/p-xylene	mg/kg				60 - 140	
	0	o-xylene	mg/kg	0.1	2.3	2.9	60 - 140	79
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	97
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	5	60 - 140	93
OCs in Water						N	lethod: ME-(AU	J)-[ENV]AN
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB164551.002	Monocyclic	Benzene	µg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene	µg/L	0.5	50	45.45	60 - 140	110
		m/p-xylene	µg/L	1	100	90.9	60 - 140	110
		o-xylene	µg/L	0.5	50	45.45	60 - 140	110
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.6	5	60 - 140	92
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.3	5	60 - 140	86
		d8-toluene (Surrogate)	µg/L		4.4	5	60 - 140	88
		_d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L	-	4.4 5.1	5	60 - 140 60 - 140	88 103
/olatile Petroleun	n Hydrocarbons in §	Bromofluorobenzene (Surrogate)		-		5	60 - 140	103
	n Hydrocarbons in \$	Bromofluorobenzene (Surrogate)	μg/L	-	5.1	5	60 - 140 fethod: ME-(AL	103 J)-[ENV]AN
Sample Numbe	-	Bromofluorobenzene (Surrogate) Soll Parameter	µg/L Units	LOR	5.1 Result	5 N Expected	60 - 140 fethod: ME-(AU Criteria %	103 J)-[ENV]AN Recovery
<mark>/olatile Petroleun</mark> Sample Numbe LB164428.002	-	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10	μg/L Units mg/kg	- LOR 25	5.1 Result <25	5 Expected 24.65	60 - 140 fethod: ME-(AL Criteria % 60 - 140	103 J)-[ENV]AN Recovery 84
Sample Numbe	r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9	μg/L Units mg/kg mg/kg	- LOR 25 20	5.1 Result <25 <20	5 Expected 24.65 23.2	60 - 140 /ethod: ME-(AL Criteria % 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80
Sample Numbe	-	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg	LOR 25 20	5.1 Result <25 <20 3.8	5 Expected 24.65 23.2 5	60 - 140 tethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80 75
Sample Numbe	r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg	LOR 25 20 -	5.1 Result <25 <20 3.8 4.0	5 Expected 24.65 23.2 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80
Sample Numbe	r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg	LOR 25 20	5.1 Result <25 <20 3.8 4.0 4.0	5 Expected 24.65 23.2 5 5 5 5 5	60 - 140 fethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80 80
Sample Numbe	Surrogates	Bromofluorobenzene (Surrogate) Soli Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - -	5.1 Result <25 <20 3.8 4.0 4.0 4.5	5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80 80 80 90
Sample Numbe	r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - - 25	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25	5 Expected 24.65 23.2 5 5 5 5 5 7.25	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80 80 90 98
Sample Numbe LB164428.002	Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 25	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <25	5 Expected 24.65 23.2 5 5 5 5 5 7.25 24.65	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 Recovery 84 80 75 80 80 90 98 84
Sample Numbe	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C9	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 25 20	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <20 <20	5 Expected 24.65 23.2 5 5 5 5 5 7.25 24.65 23.2	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82
Sample Numbe LB164428.002	Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 25	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <25 <20 4.2	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84
Sample Numbe LB164428.002	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 25 20 - -	5.1 Result <25 <20 3.8 4.0 4.5 <25 <25 <25 <20 4.2 4.6	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 Recovery 84 80 75 80 90 98 84 82 84 92
Sample Numbe LB164428.002	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - - 25 25 20 - - - - -	5.1 Result <25 <20 3.8 4.0 4.5 <25 <25 <25 <20 4.2 4.6 4.9	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	103 Recovery 84 80 75 80 80 90 98 84 82 84 82 84 92 97
Sample Numbe LB164428.002	Surrogates VPH F Bands Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 - - - - - - - - - - - - - - - - - -	5.1 Result <25 <20 3.8 4.0 4.5 <25 <25 <25 <20 4.2 4.6 4.9 4.7	5 Expected 24.65 23.2 5 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60	103 Recovery 84 80 75 80 80 90 98 84 82 84 82 97 93
Sample Numbe LB164428.002 LB164430.002	Surrogates VPH F Bands Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - - 25 25 20 - - - - -	5.1 Result <25 <20 3.8 4.0 4.5 <25 <25 <25 <20 4.2 4.6 4.9	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140	103 P-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84 92 97 93 96
Sample Numbe LB164428.002 LB164430.002	Surrogates VPH F Bands Surrogates	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 - - - - - - - - - - - - - - - - - -	5.1 Result <25 <20 3.8 4.0 4.5 <25 <25 <25 <20 4.2 4.6 4.9 4.7	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Iethod: ME-(AL Criteria % 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60 60 - 140 60	103 P-[ENV]AN Recovery 84 80 75 80 90 98 84 82 84 92 97 93 96
Sample Numbe LB164428.002 LB164430.002	VPH F Bands Surrogates VPH F Bands VPH F Bands NVPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 - - - - - - - - - - - - - - - - - -	5.1 Result <25 <20 3.8 4.0 4.5 <25 <25 <25 <20 4.2 4.6 4.9 4.7	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Criteria % 60 - 140	103 P-[ENV]AN Recovery 84 80 75 80 90 98 84 82 84 92 97 93 96
Sample Numbe LB164428.002 LB164430.002	VPH F Bands Surrogates VPH F Bands VPH F Bands NVPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 Bromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 Vater	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 - - - - 25 25	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <20 4.2 4.6 4.9 4.7 <25	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 Criteria % 60 - 140	103 P-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84 92 97 93 96 J-[ENV]AN
Sample Numbe LB164428.002 LB164430.002 'olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands VPH F Bands NVPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Vater Parameter	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 25 20 - - - 25 25 20 - - - 25 25 20 - - 25 25	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <20 4.2 4.6 4.9 4.7 <25 Result	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84 92 97 93 96 J)-[ENV]AN Recovery
Sample Numbe LB164428.002 LB164430.002 'olatile Petroleun Sample Numbe	VPH F Bands Surrogates VPH F Bands VPH F Bands NVPH F Bands	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10	μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- LOR 25 20 - - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 25 20 - - - - - - - - - - - - -	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <20 4.2 4.6 4.9 4.7 <25 Result 940	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140	103 J)-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84 92 97 93 96 J)-[ENV]AN Recovery 100
Sample Numbe LB164428.002 LB164430.002 'olatile Petroleun Sample Numbe	VPH F Bands VPH F Bands Surrogates VPH F Bands VPH F Bands n Hydrocarbons in \ r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10	μg/L Units mg/kg	- LOR 25 20 - - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 25 20 - - - - - - - - - - - - -	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <25 <220 4.2 4.6 4.9 4.7 <25 Result 940 770	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 fethod: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Criteria % 60 - 140 60 - 140 60 - 140	103 P-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84 92 97 93 96 V)-[ENV]AN Recovery 100 94
Sample Numbe _B164428.002 _B164430.002 _B164430.002	VPH F Bands VPH F Bands Surrogates VPH F Bands VPH F Bands n Hydrocarbons in \ r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L Units mg/kg mg/kg </td <td>- LOR 25 20 - - - 25 25 20 - - - 25 25 20 - - - 25 25 20 - - - 25 25 20 - - - - - - - - - - - - -</td> <td>5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <25 <20 4.2 4.6 4.9 4.7 <25 Result 940 7770 4.9</td> <td>5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 k k k k k k k k</td> <td>60 - 140 fethod: ME-(AL Criteria % 60 - 140 60</td> <td>103 J)-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84 82 84 92 97 93 96 J)-[ENV]AN Recovery 100 94 97</td>	- LOR 25 20 - - - 25 25 20 - - - 25 25 20 - - - 25 25 20 - - - 25 25 20 - - - - - - - - - - - - -	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <25 <20 4.2 4.6 4.9 4.7 <25 Result 940 7770 4.9	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 k k k k k k k k	60 - 140 fethod: ME-(AL Criteria % 60 - 140 60	103 J)-[ENV]AN Recovery 84 80 75 80 80 90 98 84 82 84 82 84 92 97 93 96 J)-[ENV]AN Recovery 100 94 97
Sample Numbe _B164428.002 _B164430.002 _B164430.002	VPH F Bands VPH F Bands Surrogates VPH F Bands VPH F Bands n Hydrocarbons in \ r	Bromofluorobenzene (Surrogate) Soll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L Units mg/kg mg/kg </td <td>- 25 20 - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 20 - - 25 20 - - - 25 20 - - - - - - - - - - - - - - - - - -</td> <td>5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <20 4.2 4.2 4.6 4.9 4.7 <25 Result 940 7770 4.9 4.8</td> <td>5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 k k k k k k k k</td> <td>60 - 140 tethod: ME-(AL Criteria % 60 - 140 60</td> <td>103 J)-[ENV]AI Recover 84 80 90 98 84 82 84 82 97 93 96 J)-[ENV]AI Recover 100 94 97 96</td>	- 25 20 - - 25 25 20 - - - 25 25 20 - - 25 25 20 - - 25 20 - - 25 20 - - - 25 20 - - - - - - - - - - - - - - - - - -	5.1 Result <25 <20 3.8 4.0 4.0 4.5 <25 <25 <20 4.2 4.2 4.6 4.9 4.7 <25 Result 940 7770 4.9 4.8	5 Expected 24.65 23.2 5 5 5 7.25 24.65 23.2 5 5 5 5 5 5 7.25 k k k k k k k k	60 - 140 tethod: ME-(AL Criteria % 60 - 140 60	103 J)-[ENV]AI Recover 84 80 90 98 84 82 84 82 97 93 96 J)-[ENV]AI Recover 100 94 97 96

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN312

Mercury in Soil Method: ME-(AU)-[ENV							J)-[ENV]AN312	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE187930.001	LB164437.004	Mercury	mg/kg	0.05	0.21	0.07	0.2	69 ④
SE187930.020	LB164438.004	Mercury	mg/kg	0.05	0.28	0.16	0.2	62 ④

OC Pesticides in	001						Met	NOC: ME-(AU	J)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE187930.004	LB164431.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	97
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	80
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	78
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1		-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	81
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	83
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	_
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	_
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	_
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	82
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1		
			Methoxychlor		0.1	<0.1	<0.1		
				mg/kg	0.1		<0.1	-	
			Endrin Ketone	mg/kg		<0.1		-	
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	
			Mirex	mg/kg	0.1	<0.1	<0.1		
		0	Total CLP OC Pesticides	mg/kg	1		<1	-	-
05407000.000	L D 40 4 400 000	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.14	-	85
SE187930.023	LB164432.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	79
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	81
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	76
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	80
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	79
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	75
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	_	
			Methoxychlor		0.1	<0.1	<0.1	-	-
				mg/kg					
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

C Pesticides in	Soil (continued)						Met	hod: ME-(AL	J)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E187930.023	LB164432.026		Mirex	mg/kg	0.1	<0.1	<0.1		
			Total CLP OC Pesticides	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.11	0.12	-	71
P Pesticides in	Soll						Met	hod: ME-(AU	J)-IENVIAN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE187930.002								2	
SE 10/930.002	LB164431.025		 Dimethoate	mg/kg	0.5	1.8	<0.5	-	90
			Diazinon (Dimpylate)	mg/kg	0.5	1.9	<0.5	2	93
			Fenitrothion	mg/kg mg/kg	0.2	<0.2	<0.2	-	
			Malathion	mg/kg	0.2	<0.2	<0.2	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	<0.2	2	99
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	2.2	<0.2	2	107
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	_
			Total OP Pesticides*	mg/kg	1.7	7.8	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	96
		-	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	104
SE187930.021	LB164432.024		Dichlorvos	mg/kg	0.5	1.7	<0.5	2	83
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	2.2	<0.5	2	108
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.2	<0.2	2	108
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	2.2	<0.2	2	111
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	8.3	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	86
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	94
AH (Polynuclea	ar Aromatic Hydrocarb	ons) in Soil					Met	hod: ME-(AL	J)-[ENV]AI
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE187930.002	LB164431.025		Naphthalene	mg/kg	0.1	4.5	<0.1	4	113
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.6	<0.1	4	116
			Acenaphthene	mg/kg	0.1	4.7	<0.1	4	118
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.9	<0.1	4	121
			Anthracene	mg/kg	0.1	4.6	<0.1	4	113
			Fluoranthene	mg/kg	0.1	4.6	0.1	4	111
			Pyrene	mg/kg	0.1	4.9	<0.1	4	121
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.7	<0.1	4	115
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.7</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.7	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.8</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.8	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.7</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.7	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	37	<0.8	-	-
		Surrogates		mg/kg mg/kg	-	37 0.5	<0.8 0.5	-	- 102
		Surrogates	Total PAH (18)						

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	r Aromatic Hydrocarbo	ons) in Soli (con						IOO: ME-(AU)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E187930.021	LB164432.024		Naphthalene	mg/kg	0.1	5.0	<0.1	4	124
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.5	<0.1	4	112
			Acenaphthene	mg/kg	0.1	4.7	<0.1	4	117
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	5.0	<0.1	4	124
			Anthracene	mg/kg	0.1	4.4	<0.1	4	110
			Fluoranthene	mg/kg	0.1	4.9	<0.1	4	124
			Pyrene	mg/kg	0.1	4.7	<0.1	4	118
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	_	_
			· · ·						
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1		
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.6	<0.1	4	115
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.6</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.6	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.7</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.7	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.7</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.7	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	38	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	92
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	86
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	94
CBs in Soil							Meth	nod: ME-(AL)-IENVIAN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E187930.004	LB164431.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	101
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	91
SE187930.023	LB164432.024		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	_	
			Arochlor 1254		0.2	0.4	<0.2	0.4	92
			Arochior 1260 Arochior 1262	mg/kg mg/kg	0.2	<0.2	<0.2	-	92
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	99
otal Recoverabl	le Elements in Soil/Wa	ste Solids/Mate	rials by ICPOES				Method: ME	-(AU)-[ENV]	AN040/AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E187930.001	LB164435.004		Arsenic, As	mg/kg	1	29	6	50	46 ④
			Cadmium, Cd	mg/kg	0.3	38	<0.3	50	76
			Chromium, Cr	mg/kg	0.3	86	68	50	36 ④
			Copper, Cu		0.5	43	1.2	50	83
				mg/kg					
			Nickel, Ni	mg/kg	0.5	39	2.6	50	72
			Lead, Pb	mg/kg	1	43	8	50	70 ④
			Zinc, Zn	mg/kg	2	45	8.1	50	75
E187930.020	LB164436.004		Zinc, Zn Arsenic, As	mg/kg mg/kg	2	45 47	8.1 11	50 50	75 72

17/1/2019

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE187930.020	LB164436.004		Chromium, Cr	mg/kg	0.3	46	5.8	50	81
32101000.020	20104400.004		Copper, Cu	mg/kg	0.5	48	8.6	50	79
			Nickel, Ni	mg/kg	0.5	40	0.8	50	78
			Lead, Pb	mg/kg	1	53	9	50	88
			Zinc, Zn	mg/kg	2	50	9.8	50	81
race Metale (Dir	ssolved) in Water by I	CDMS						nod: ME-(AL	
•		CF MG	Devementer	Linite		Decult			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
SE187930.031	LB164585.004		Arsenic, As	μg/L	1	20	<1	20	99
			Cadmium, Cd	µg/L	0.1	20	<0.1	20	102
			Chromium, Cr	μg/L	11	22	<1	20 20	108
			Copper, Cu Lead, Pb	μg/L μg/L	1	22	<1	20	110 104
			Nickel, Ni	μg/L	1	21	<1	20	10
			Zinc, Zn	μg/L	5	23	<5	20	11:
DI I (Tetel Dece) i= 0-i	2110, 211	P9/C	0	20			
	verable Hydrocarbon	s) in Soli						nod: ME-(AU	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
SE187930.002	LB164431.025		TRH C10-C14	mg/kg	20	44	<20	40	110
			TRH C15-C28	mg/kg	45	<45	<45	40	10
			TRH C29-C36	mg/kg	45	47	<45	40	11
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total TRH C10-C40 Total (F bands)	mg/kg	110 210	<110 <210	<110 <210	-	-
		TRH F Bands	TRH C10-C40 Total (P bands)	mg/kg	210	43	<210	40	- 108
		TKH F Ballus	TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg	25	43	<25	-	-
			TRH >C10-C10-C10-C10-C10-C10-C10-C10-C10-C10-	mg/kg	90	<90	<90	40	- 108
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
SE187930.021	LB164432.024		TRH C10-C14	mg/kg	20	39	<20	40	
SE107 350.021	LD104432.024		TRH C15-C28	mg/kg	45	<45	<45	40	98
			TRH C29-C36	mg/kg	45	<45	<45	40	10
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	_
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	_	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	40	<25	40	10
		in an Dando	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	40	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	10
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	_
/OC's in Soil								nod: ME-(AL	
	Comula Number		Devementer	Linite	LOR	Decult			
QC Sample SE187930.001	Sample Number LB164428.004	Monocyclic	Parameter Benzene	Units	0.1	Result 2.1	Original <0.1	Spike 2.9	Recov 73
SE 107 350.001	LD104420.004	Aromatic	Toluene	mg/kg mg/kg	0.1	1.8	<0.1	2.9	63
		, aomaio	Ethylbenzene	mg/kg	0.1	2.2	<0.1	2.9	75
			m/p-xylene	mg/kg	0.2	4.1	<0.2	5.8	70
			o-xylene	mg/kg	0.1	2.0	<0.1	2.9	68
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	3.6	-	80
		ů.	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.1	-	83
			d8-toluene (Surrogate)	mg/kg	-	4.2	3.9	-	84
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.0	4.3	-	80
		Totals	Total Xylenes	mg/kg	0.3	6.0	<0.3	-	-
			Total BTEX	mg/kg	0.6	12	<0.6	-	-
SE187930.020	LB164430.004	Monocyclic	Benzene	mg/kg	0.1	2.7	<0.1	2.9	92
		Aromatic	Toluene	mg/kg	0.1	1.9	<0.1	2.9	63
			Ethylbenzene	mg/kg	0.1	2.6	<0.1	2.9	89
			m/p-xylene	mg/kg	0.2	5.2	<0.2	5.8	90
			o-xylene	mg/kg	0.1	2.6	<0.1	2.9	90
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.9	5.1	-	11
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.9	4.1	-	11

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (co	ntinued)						Met	nod: ME-(AL)-[ENV]AN43
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE187930.020	LB164430.004	Surrogates	Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	4.0	-	90
		Totals	Total Xylenes	mg/kg	0.3	7.8	<0.3	-	-
			Total BTEX	mg/kg	0.6	15	<0.6	-	-
/olatile Petroleu	m Hydrocarbons in §	Soil					Met	nod: ME-(AL)-[ENV]AN43
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE187930.001	LB164428.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	79
			TRH C6-C9	mg/kg	20	<20	<20	23.2	75
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	3.6	-	80
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.1	-	83
			d8-toluene (Surrogate)	mg/kg	-	4.2	3.9	-	84
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.0	4.3	-	80
		VPH F	Benzene (F0)	mg/kg	0.1	2.1	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	101
SE187930.020 L	LB164430.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	89
			TRH C6-C9	mg/kg	20	20	<20	23.2	87
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.9	5.1	-	117
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.9	4.1	-	118
			d8-toluene (Surrogate)	mg/kg	-	3.6	4.2	-	72
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	4.0	-	90
		VPH F	Benzene (F0)	mg/kg	0.1	2.7	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	98
olatile Petroleu	m Hydrocarbons in \	Nater					Met	nod: ME-(AL)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE187951.001	LB164551.025		TRH C6-C10	µg/L	50	910	<50	946.63	96
			TRH C6-C9	µg/L	40	740	<40	818.71	90
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.4	4.4	-	88
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.6	4.4	-	92
			d8-toluene (Surrogate)	µg/L	-	5.2	4.8	-	103
			Bromofluorobenzene (Surrogate)	µg/L	-	5.6	5.0	-	112
		VPH F	Benzene (F0)	µg/L	0.5	46	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	630	<50	639.67	98

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

Contact	Emmanuel Woelders	Manager	Adam Atkinson
Client	EI AUSTRALIA	Laboratory	SGS Melbourne EH&S
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	10/585 Blackburn Road Notting Hill Victoria 3168
Telephone	61 2 95160722	Telephone	+61395743200
Facsimile	(Not specified)	Facsimile	+61395743399
Email	au.environmental.sydney@sgs.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	E23975	SGS Reference	ME309514 R0
Order Number	SE187930A	Date Received	01 Feb 2019
Samples	2	Date Reported	08 Feb 2019

COMMENTS

Whilst SGS laboratories conform to ISO:17025 standards, results of analysis in this report fall outside of the current scope of NATA accreditation .

SIGNATORIES .

charj

Ryan Zhang Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Bldg 10, 585 Blackburn Rd N

ANALYTICAL REPORT

		ample Number Sample Matrix Sample Date Sample Name	ME309514.001 Soil 08 Jan 2019 BH119_0.2-0.3	ME309514.002 Soil 08 Jan 2018 BH121_0.2-0.3
Parameter	Units	LOR		
Moisture Content Method: AN002 Tested: 5/2/2019				
% Moisture	%w/w	1	19.5	14.8
Organic Mercury in soil Method: MA-11400-SL-SP-ORG-HG	Tested: 5/2	2/2019		
Methyl Mercury	mg/kg	0.01	<0.01	<0.01

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Moisture Content	Method: ME-(AU)-[ENV]AN002	
Parameter		QC

Parameter	QC Reference	Units	LOR	DUP %RPD
% Moisture	LB024949	%w/w	1	14%

Organic Mercury in soil Method: MA-11400-SL-SP-ORG-HG

Parameter	QC Reference	Units	LOR	МВ
Methyl Mercury	LB024950	mg/kg	0.01	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
MA1400-SL-SP-ORG-HG	This method is based on USEPA 3200 for determination of organic mercury using liquid chromatography – inductively coupled plasma mass spectrometer (LC-ICPMS). For the determination of extractable methyl-mercury species, a representative sample aliquot is extracted with an appropriate volume of solvent, at an elevated temperature. Methyl-mercury species fractions are separated and determined by using an high performance liquid chromatography (HPLC) as the separation device, coupled with an Agilent ICP-MS 7500Ce as the detector.

FOOTNOTES _

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * NATA accreditation does not cover the
- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- $\uparrow \downarrow \qquad \text{Raised or Lowered Limit of Reporting}$
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 209189

Client Details	
Client	El Australia
Attention	Lab Email, Emmanuel Woelders
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23975, St lves
Number of Samples	1 Soil
Date samples received	09/01/2019
Date completed instructions received	09/01/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	16/01/2019			
Date of Issue	14/01/2019			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals

Authorised By

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		209189-1
Your Reference	UNITS	QT1
Date Sampled		07/01/2019
Type of sample		Soil
Date extracted	-	10/01/2019
Date analysed	-	11/01/2019
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	80

svTRH (C10-C40) in Soil		
Our Reference		209189-1
Your Reference	UNITS	QT1
Date Sampled		07/01/2019
Type of sample		Soil
Date extracted	-	10/01/2019
Date analysed	-	11/01/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	81

Acid Extractable metals in soil		
Our Reference		209189-1
Your Reference	UNITS	QT1
Date Sampled		07/01/2019
Type of sample		Soil
Date prepared	-	10/01/2019
Date analysed	-	10/01/2019
Arsenic	mg/kg	5
Cadmium	mg/kg	<0.4
Chromium	mg/kg	25
Copper	mg/kg	26
Lead	mg/kg	49
Mercury	mg/kg	0.1
Nickel	mg/kg	10
Zinc	mg/kg	42

Moisture		
Our Reference		209189-1
Your Reference	UNITS	QT1
Date Sampled		07/01/2019
Type of sample		Soil
Date prepared	-	10/01/2019
Date analysed	-	11/01/2019
Moisture	%	8.6

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			10/01/2019	[NT]		[NT]	[NT]	10/01/2019	
Date analysed	-			11/01/2019	[NT]		[NT]	[NT]	11/01/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	94	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	94	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	101	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	95	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	90	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	92	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	91	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	85	[NT]		[NT]	[NT]	82	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duj	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			10/01/2019	[NT]	[NT]		[NT]	10/01/2019	
Date analysed	-			10/01/2019	[NT]	[NT]		[NT]	10/01/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]	[NT]		[NT]	105	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]	[NT]		[NT]	103	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]	[NT]		[NT]	130	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]	[NT]		[NT]	105	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]	[NT]		[NT]	103	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]	[NT]		[NT]	130	
Surrogate o-Terphenyl	%		Org-003	88	[NT]	[NT]	[NT]	[NT]	98	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			10/01/2019	[NT]		[NT]	[NT]	10/01/2019	
Date analysed	-			10/01/2019	[NT]		[NT]	[NT]	10/01/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	102	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	103	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	99	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	96	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	98	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & F. Coli levels are less than					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW Report No. E23975.E02_Rev0

APPENDIX G QA/QC Assessment

I1 QUALITY CONTROL PROGRAM

I1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this Detailed Site Investigation, El collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed QC samples. Details of the field and laboratory QC samples are provided, with the allowable acceptance ranges for the data presented in **Table I-1**.

Table I-1	Sampling	Data Quality	Indicators
	Camping	Data Quanty	maicators

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:
	 Results are less than 10 times the limits of reporting (LOR);
	Results are less than 20 times the LOR and the RPD is less than 50%; or
	Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative	Data accuracy would be assessed through the analysis of:
measure of the closeness of reported data to the "true" value	 Method blanks, which are analysed for the analytes targeted in the primary samples;
value	 Matrix spike and matrix spike duplicate sample sets;
	Laboratory control samples; and
	Calibration of instruments against known standards.
Representativeness – The confidence (expressed qualitatively) that data are	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
representative of each medium present onsite	• Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	 The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness – A measure of the amount of useable data	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
from a data collection activity	 Standard operating procedures (SOPs) for sampling protocols were adhered to; and
	 Copies of all COC documentation are presented, reviewed and found to be properly completed.
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.

QA/QC Measures	Data Quality Indicators
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition the data will be collected by experienced samplers and NATA-
	accredited laboratory methodologies will be employed in all laboratory testing programs.

I1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

I2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) samples collected during the soil investigation works were as follows:

- One blind field duplicates (soil);
- One inter-laboratory duplicate (soil);
- One trip blank (soil); and
- One trip spikes (soil); and

Analytical results for tested soil QA/QC samples, including the calculated RPD values between primary and duplicate samples, are presented in **Table 3 (I3)**.

I2.1 SOIL INVESTIGATION

I2.1.1 Blind Field Duplicate

Sample QD1 was collected as a blind field duplicate (BFD) of the primary sample BH102_0.2-0.3 on 7 January 2019. The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD soil sample was analysed for TRHs, BTEX, selected heavy metals.

Calculated RPD values were found to be within the Data Acceptance Criteria with the exceptions of arsenic (54.55%), copper (112%), mercury (103.23%) and nickel (149.34%) for BH102_0.2-0.3 (**Table I3**). These results were considered to reflect the non-homogenous nature of the fill material.

I2.1.2 Inter-Laboratory Duplicate

Sample QT1 was collected as an inter-laboratory duplicate (ILD) of the primary sample BH102_0.2-0.3 on 7 January 2019. The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX, and selected heavy metals.

The calculated RPD values were within the Data Acceptance Criteria, with the exception of copper (81.08%) and nickel (110.08%).The exceedances can be noted to occur between the sample and triplicate sample (QT1) which can be attributed to material heterogeneity.

Analytical results indicated that the samples collected were representative of the soils present at respective sampling locations.

I2.1.3 Trip Blank

One soil trip blank (BH100_QTB1) sample was prepared and analysed by the primary laboratory (SGS) for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that satisfactory sample transport and handling conditions were achieved.

I2.1.4 Trip Spike

One soil trip spike (BH100_QTS1) sample was submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

12.2 ASSESSMENT OF FIELD QA/QC DATA

All samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment, in regards to soil and groundwater.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data, EI considered the field QA/QC programme carried out during the investigation works to be appropriate and the results to be acceptable.

I3 LABORATORY QA/QC

I3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix H**), respective tests are accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix J**.

I3.2 SAMPLE HOLDING TIMES

All sample holding times were within standard environmental protocols as tabulated in Appendix J.

I3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for the tested parameters during the assessments of soils are presented in **Appendix J**.

7I3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

I3.5 LABORATORY DUPLICATE SAMPLES

The RPD values of Laboratory Duplicate Samples (LDS) for the analysis batches were all within acceptable ranges and conformed to the DAC.

I3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches were within acceptable ranges and conformed to the DAC.

I3.7 MATRIX SPIKES

The matrix spikes of the analysis batches were within acceptable ranges and conformed to the DAC, with the exception of some mercury, arsenic, chromium and lead due to matrix interference.

I3.8 CONCLUDING REMARK

Based on the laboratory QA/QC results, EI considers that although a small number of discrepancies were identified, the data generally confirms that the analytical results for soil laboratory testing were valid and useable for interpretation purposes.

Table I3	Soil RPD values E23975 - St Ives																	
			TRH			BTEX			Heavy Metals									
Sample identification	Description	Date	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Duplicate - S	Soil Investigation	•	•	•			•		•		•							
BH102_0.2-0.3	Site Investigation	7/01/2019	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	7	<0.3	21	11	64	0.13	2.9	47
QD1	BFD of BH102_0.2-0.3	7/01/2019	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	17	39	41	<0.05	20	42
	RPD	-	0.00	0.00	NA	NA	0.00	0.00	0.00	0.00	54.55	0.00	21.05	112.00	43.81	103.23	149.34	11.24
Inter-laboratory Duplicate - S	Soil Investigation	•																
BH102_0.2-0.3	Site Investigation	7/01/2019	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	7	<0.3	21	11	64	0.13	2.9	47
QT1	ILD of of BH102_0.2-0.3	//01/2019	<25	<50	<100	<100	<0.2	<0.5	<1	<3	5	<0.4	25	26	49	0.1	10	42
	RPD	-	0.00	NA	NA	NA	NA	NA	NA	NA	33.33	NA	17.39	81.08	26.55	26.09	110.08	11.24
Rinsate Blanks		•																
BH100_QR1	Equipment rinsate	8/1/2019	<50	<60	<500	<500	<0.5	1	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
rip Spikes																		
BH100_QTS1	Soil trip spike	8/1/2019	-	-	-	-	[97%]	[95%]	[107%]	[108%]	-	-	-	-	-	-	-	-
Trip Blanks																		
BH100_QTB1	Soil trip blank	8/1/2019	-	-	-	-	<0.1	<0.1	<0.1	< 0.3	-	-	-	-	-	-	-	-

NOTE: All results are reported in mg/kg (soil) or μ g/L (water)

RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005) RPD exceeds 30-50% range referenced from AS4482.1 (2005)

F1 = TRH C6-C10 less the sum of BTEX F2 = TRH >C10-C16 less naphthalene F3 = TRH >C16-C34 F4 = TRH >C34-C40

66.67 52.87

¹ Value shown is the lowest recovery value reported for xylenes

Detailed Site Investigation Pymble Golf Club 4, 12-14 Cowan Road, St Ives NSW Report No. E23975.E02_Rev0

APPENDIX H Laboratory QA/AC Policies and DQOs

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil						
Parameter	Container	Preservation	Maximum Holding Time			
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months			
Mercury	Glass with Teflon Lid	Nil	28 days			
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days			
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days			
Phenols	Glass with Teflon Lid	4°C ¹	14 days			
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days			
Asbestos	Sealed Plastic Bag	Nil	N/A			

Table QC2 - Containers, Preservation Requirements and Holding Times - Water						
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time			
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months			
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months			
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days			
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days			

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil								
Parameter	PQL	Method Reference						
Metals in Soil								
Arsenic - As ¹	mg / kg	1	USEPA 200.7					
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7					
Chromium - Cr ¹	mg / kg	1	USEPA 200.7					
Copper - Cu ¹	mg / kg	1	USEPA 200.7					
Lead - Pb ¹	mg / kg	1	USEPA 200.7					
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A					
Nickel - Ni ¹	mg / kg	1	USEPA 200.7					
Zinc - Zn ¹	mg / kg	1	USEPA 200.7					
	al Petroleum Hyd	rocarbons (TP	Hs) in Soil					
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260					
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000					
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000					
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000					
	BTE	X in Soil						
Benzene	mg / kg	1	USEPA 8260					
Toluene	mg / kg	1	USEPA 8260					
Ethylbenzene	mg / kg	1	USEPA 8260					
m & p Xylene	mg / kg	2	USEPA 8260					
o- Xylene	mg / kg	1	USEPA 8260					
	Other Organic C	ontaminants i	n Soil					
PAHs	mg / kg	0.05-0.2	USEPA 8270					
CHCs	mg / kg	1	USEPA 8260					
VOCs	mg / kg	1	USEPA 8260					
SVOCs	mg / kg	1	USEPA 8260					
OCPs	mg / kg	0.1	USEPA 8140, 8080					
OPPs	mg / kg	0.1	USEPA 8140, 8080					
PCBs	mg / kg	0.1	USEPA 8080					
Phenolics	mg / kg	5	APHA 5530					
	As	bestos						
Asbestos	mg / kg	Presence / Absence	AS4964-2004					

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method
	Heavy	Metals		Chlorinated	Hydroc	arbons	(CHCs)
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npounds	s (VOCs)
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B
Total Petro		drocarb	ons (TPHs)		olic Con	npound	
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	neous l	Paramet	ters
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN
Polyciclic Are	omatic H	lydrocar	bons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+
OrganoCl	hlorine F	Pesticide	, ,	OrganoPhos	phate Pe	esticide	s (OPPs)
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141
DDT Dieldrin	μg/L	0.001	USEPA 8081	Diazinon Dimothoato	μg/L	0.01	USEPA 8141
Dieldrin Endosulfan	μg/L μg/L	0.001	USEPA 8081 USEPA 8081	Dimethoate Fenitrothion	μg/L μg/L	0.01	USEPA 8141 USEPA 8141
Endrin	μg/L μg/L	0.001	USEPA 8081	Malathion	μg/∟ μg/L	0.01	USEPA 8141
Heptachlor	μg/L μg/L	0.001	USEPA 8081	Parathion	μg/L μg/L	0.01	USEPA 8141
Lindane	μg/L	0.001	USEPA 8081	Temephos	μg/L	0.01	USEPA 8141
Toxaphene	μg/L	0.001	USEPA 8081	Polychlorin			
				Individual PCBs	μg/L	0.01	USEPA 8081

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL)
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Laboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%
	Laboratory QC	
_aboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample resul > 10 LOR
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)
Matrix Spikes Laboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.
Calibration Check Standard & Blank	Calibration Standards are checked old versus new with a criteria of ±10%

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".				
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.				
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.				
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.				
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests. All recoveries are to be reported to 3 significant figures.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: Inorganics (water samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike^{4*} Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS⁴/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ±2 standard deviations of the expected value. 				
	the expected value.				

	Organics
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	 Retention times are to vary by no more than 0.2 min.
	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
All recoveries are to be reported to 3 significant figures.	 Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS^{,*}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ^AMatrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK_DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS